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Abstract

Presented here is a general analysis of the power output of the split-cylinder gamma-
type Stirling heat engine. More specifically, this work offers an analysis of the validity
of the mathematical model developed by Gustav Schmidt in 1871, and reproduced
by J. R. Senft in 2002, in predicting the power output of such a Stirling engine
given a set of test conditions and engine parameters [1, 2]. A stock Stirling engine
manufactured by Solar Engines of Phoenix, AZ, was obtained and heavily modified
to allow for manipulation of the engine parameters κ, the swept volume ratio, and
α, the phase angle, so that their effects on output power, measured by means of a
de Prony brake, could be independently determined and compared to theory. The
mechanics of the Stirling engine is first described in detail, both conceptually and in
terms of the underlying thermodynamic principles governing the Stirling cycle, before
the model and its key assumptions are presented. The engine used is also thoroughly
described, along with the modifications performed to it that enabled manipulation
of κ and α. Due to a combination of insufficient data and the inherent difference
between the indicated power predicted by the model and the brake power measured
experimentally, the results of this study are largely inconclusive, yet do suggest that
the Schmidt model can to a degree, and especially at low engine speeds, predict broad
trends.





Introduction

Human beings are lazy. So lazy, in fact, that we routinely and ironically devote our

cleverness to developing mechanisms that accomplish some goal in our stead. Out

of laziness, one might then say, arose the engine, the literal heart enabling so many

modern machines. From the internal combustion engines of our beloved motorcycles

to the herculean gas turbines of jumbo jets and the miniscule electric motors of

model airplanes, the ubiquitous engine permeates our lives almost without notice or

due appreciation of its diversity. Most engines today are powered by electricity or

by exploding gasses, but engines do exist that are powered by nothing more than

the heat energy provided by some fuel source. Engines of this type, appropriately

called heat engines, absorb heat energy and convert a portion of that energy into

mechanical work, or force exerted over some distance, with the size of that portion

dictated by the engine’s efficiency [3, 4]. In the case of the steam engine, certainly

the most well-known of all heat engines, water within a closed boiler absorbs heat

energy from a fuel source, vaporizes, and builds pressure within the boiler. Through

an intricate medley of pipes and valves, this pressurized water vapor is made to do

work on a piston which in turn can be made to do work on crankshafts, wheels, gears,

propellers, pumps—whatever is required. In short, heat energy is absorbed by some

medium (water), and through an elaborate mechanical process some of this energy is

converted into work, precisely the mission statement of the heat engine.

Even though it once dominated the world of engines, the steam engine does not

have exclusive rights to the classification of heat engine. The Stirling engine, devel-

oped in 1816 by the Scottish minister Rev. Robert Stirling, also fits the heat engine

prescription but in a manner more simple and elegant than steam [5, 4]. Perhaps

the most curious difference is that while a steam engine needs a heat source to boil

its water, a Stirling engine only requires a temperature differential between what are

called the hot and cold spaces of the engine. Hence, an appropriately designed engine

may in fact run off of a heat sink (or cold “source”) instead of a heat source, pro-

vided said heat sink produces a sufficiently large temperature differential. Even more
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remarkable is that by no means must this temperature differential be substantial;

a high-quality, low-temperature engine can operate quite ethereally off of a differ-

ential on the order of a mere half-degree Celsius (0.5 C◦) [6, 7]! Indeed, relatively

inexpensive, low-temperature Stirling engines can easily be sourced online that run

contentedly and indefinitely off the heat from one’s own hand, or the heat-sapping

capacity of a single ice cube.

The astounding low-temperature capability of the Stirling engine is not the only

feature distinguishing it from the steam engine, however. Even higher-powered Stir-

ling engines, capitalizing on a more extreme temperature differential to produce 150

horsepower or more, differ from steam engines in that they do not expel their working

fluid, or the fluid which actually does work on a piston, during operation [5]. Gone

are the iconic vapor clouds and perpetual hissing of the steam engine discharging

steam, the working fluid, from its pistons for the Stirling engine contains its working

fluid in a nearly hermetically sealed engine body. Hence, unless a burner is used as

a heat source, the Stirling engine expels no exhaust [8]. And if a burner is used,

as is typically the case, combustion is not confined to occur, for example, over the

brief time periods allotted by, and in the often hypoxic environment of, the internal

combustion engine and its cylinders. As a result, the external combustion allowed by

the Stirling engine is continuous and complete, eliminating the residual unburned gas

fumes and particulate matter characteristic of internal combustion engines [4]. Clean

exhaust, near silent operation, no valves, timing belts, carburetors, fuel injectors or

spark plugs—the Stirling produces captivating motion and output power seemingly

out of nowhere.

But of course we know better. Power never comes from nowhere, and in the case

of the Stirling engine it is derived from heat energy alone through the controlled,

cyclic expansion and compression of the contained working fluid. Numerous physical

models have been proposed to describe how the Stirling engine cycle produces this

power, most notably that proposed in 1871 by the German professor Gustav Schmidt

[1], then of the German Polytechnic Institute in Prague, and reproduced by James

R. Senft of the University of Wisconsin [9, 2]. This model is designed to predict

the power output of an idealized Stirling engine given a set of known parameters of

the engine in question, and was chosen for this investigation due to the fact that

it is the only notable model that gives a closed-form expression for power [9]. As

such, it takes as its input a set of parameters derived from the physical dimensions of

certain engine components, and predicts the power output of the engine as configured

without requiring any computational analysis. Testing the accuracy of this model is
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the primary focus of this thesis. To accomplish this goal, a stock Stirling engine,

manufactured by Solar Engines of Phoenix, AZ, has been heavily modified in the

Reed College machine shop to allow for manipulation of relevant engine parameters,

specifically the swept volume ratio κ and the phase angle α, so as to compare their

effects on power output to those predicted by the model.





Chapter 1

Physics of the Stirling Cycle

1.1 Conceptual Outline

As was mentioned earlier, the Stirling engine derives its power from the controlled,

cyclic expansion and compression of the working fluid within the engine space. How

this expansion and contraction is achieved is the genius of the Stirling engine, and is

best understood in the context of the gamma Stirling engine shown in Fig. 1.1, one of

three engine configurations. The other two have been imaginatively named alpha and

beta engines respectively, and the differences between the three reside in the physical

layout of a few key engine components. As alpha and beta Stirling engines teach us

nothing of the Stirling cycle that can’t be more easily elucidated with reference to a

gamma engine, they will be largely ignored.

Regardless of configuration, all Stirling engines share a few common design fea-

tures, most notably the presence of two pistons which, for a gamma engine, are

referred to as the power piston, labeled “P” in Fig. 1.1, and the displacer piston,

“D.” As is characteristic of the gamma engine, the power piston resides in a separate

cylinder from the displacer piston, though the two cylinders are connected such that

the working fluid, generally air, can pass freely between them. The two pistons them-

selves are also connected, though indirectly, by any manner of mechanical linkage to

a crankshaft on which a flywheel is mounted, whose purpose is to store rotational

momentum to help smooth the engine’s rotation. A possible linkage configuration,

reminiscent of the connecting rods on the drive wheels of old steam locomotives, is

shown in Fig. 1.2. Crucial to the Stirling cycle is that however this linkage is ac-

complished, it constrains the two pistons to move out of phase by some phase angle

α, labeled as such in Fig. 1.2. Though Fig. 1.1 does not show this linkage, it does

assume a phase angle of 90◦ so that as one piston is in the middle of its stroke, or its
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Figure 1.1: Schematic diagram illustrating the Stirling cycle as performed by a
gamma-type stirling engine. The straight arrows drawn on the pistons indicate cur-
rent direction of motion; the curved arrows indicate the piston is changing direction
from the previous step. Note the gap between the displacer piston and its cylinder,
through which air is shuttled between the hot and cold spaces.



1.2. Thermodynamic Analysis 7

total back-and-forth travel, the other is at the end.

Also crucial to the Stirling cycle is that the power piston be made to reside snugly

within its cylinder, creating a nearly airtight seal, but for the displacer piston to fit

loosely enough within its cylinder for air to pass freely through the resulting annular

gap between the outer surface of the piston and the inner wall of the cylinder. As such,

the displacer piston exists literally to displace air; wherever it is, air cannot be. Step

(a) in Fig. 1.1 shows the displacer piston positioned all the way in the hot space of

the engine, that portion exposed to the heat source, thereby displacing most of the air

within the engine to the cold space, that portion exposed to the heat sink (atmosphere,

liquid-cooled environment, etc.). Assuming the engine is running, flywheel angular

momentum rotates the crankshaft, moving the displacer piston towards the cold space,

displacing air through the annular gap and towards the hot space [step (b)]. As the

air is shuttled from the cold to hot spaces, it absorbs heat energy and begins to

expand. This expansion pushes on the power piston, forcing it out and beginning

a power stroke of the engine [step (c)]. The pistons being out of phase by an angle

α ensures that the air has time to heat up and expand before the power piston has

reached the end of its stroke and is ready to begin a new cycle. It further ensures that

before the power stroke is complete, the displacer piston begins moving back to the

hot space, forcing air to the cold space in anticipation of the power piston beginning

a compression stroke [step (d)]. As the hot air in the cold space releases energy to the

heat sink, it contracts, and along with flywheel angular momentum moves the power

piston back into its cylinder, carrying out the compression stroke and completing the

Stirling cycle [back to step (a)].

1.2 Thermodynamic Analysis

In practice, the Stirling cycle is easy to implement. As suggested by the diagrams

in Fig. 1.1, Stirling engines are mechanically very simple, requiring far fewer parts

than the typical internal combustion or steam engine, and recreational hobbyists can

easily build simple, working engines using household materials alone [5, 6]. In part

due to this simplicity, Stirling engines tend to be impressively efficient, validating

the thermodynamic theory of the Stirling cycle. Efficiency in the context of Stirling

engines, and indeed all heat engines, regardless of how they work or their physical

characteristics, is defined as the ratio of the work performed by the engine W to

the heat absorbed QH , so that the efficiency e is given by e = W
QH

[3]. Hence,

the efficiency of an engine indicates how much work one would expect an engine
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Figure 1.2: Side-view diagram illustrating a possible linkage configuration. The lower
linkage rod is drawn with dotted lines to indicate it being attached to a second
flywheel, mounted to the crankshaft behind and concentric to the one visible. The
phase angle α is shown, and the end of the crankshaft is visible as a black circle in the
center of the flywheel. The angular velocity ω of the flywheel is in a counterclockwise
direction, meaning that the displacer piston leads the power piston by the angle α at
all points in the cycle. In this configuration, where r1 < r2, the stroke of the displacer
piston will be shorter than the stroke of the power piston.
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to perform given a certain amount of input energy. Curiously, as W and QH are

dependent only on the underlying thermodynamic processes of the Stirling cycle, the

theorized efficiency of a Stirling engine does not depend on the physical characteristics

of any real engine. The theoretical efficiency, therefore, does not take into account

engine configuration (alpha, beta, or gamma), piston linkage configuration, piston

size, total engine volume, or other such physical parameters. Evidently, the cycle to

which the efficiency pertains is different from, though intimately related to, the one

whose steps are sequenced in Fig. 1.1.

To understand the thermodynamics of the Stirling cycle as well as its efficiency,

we do away with everything descriptive of a specific Stirling engine and focus entirely

on the changes in pressure, volume, and temperature of the working fluid as it is

cycled back and forth within the engine space. To simplify matters, we make a few

assumptions. Firstly, we treat the working fluid as having the properties of an ideal

gas, meaning that the individual gas molecules are identical, the volume occupied

by the gas as a whole is much larger than the combined volume of the constituent

molecules, the motion of each molecule is random yet in accordance with Newton’s

laws, no forces act on the molecules except during collisions with the container or

other molecules, and these collisions are perfectly elastic, meaning no kinetic energy

is lost in the process [10, 11]. A gas having these properties abides by the ideal gas

law

pV = nRT, (1.1)

where p is the pressure of the gas, V its volume, T its temperature (in Kelvin), and

n and R are both constants. At this point, the salient conclusion of the ideal gas law

is simply that the pressure, volume, and temperature of an ideal gas (or another gas

modeled as such) are related by the simple constant nR. Hence, if the temperature

of the gas increases, for example, so must the product pV . Similarly, if the volume

increases so must the quotient T/p.

The ideal gas assumption is relatively innocuous with negligible drawbacks since

real gases behave much like ideal gases so long as they are not put under conditions (of

pressure, volume, and temperature) that would bring them near their condensation

point, or the point at which a gas ceases to be a gas [12]. As the conditions within

a Stirling engine are not at all conducive to the condensation of the working fluid,

the ideal gas assumption can have few objections. What’s more, it allows us secondly

to assume that the working fluid expands (doing work on the power piston) and

compresses isothermally, or without a change in temperature, but necessarily with a
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change in pressure by the ideal gas law [13]. This assumption is difficult to realize

in practice, but the alternative approach of accounting for non-isothermal expansion

and compression processes produces diabolically complicated theoretical models that

are beyond the scope of this paper [10] and can only be solved numerically [14].

Treating the working fluid as an ideal gas further allows us to assume that when

in the hot space, the working fluid absorbs heat and increases in temperature iso-

volumetrically, or without any change in volume. Similarly, we assume that when in

the cold space, the gas releases energy isovolumetrically [13]. This last assumption

is somewhat problematic because in real engines, the working fluid will never heat

or cool isovolumetrically. This is a necessary consequence of the (assumed) purely

sinusoidal movement of the pistons; since the pistons are in constant motion (except

instantaneously at rest at either end of their respective strokes), the volume of gas

is constantly changing throughout all points of the real Stirling cycle [4]. Hence an

isovolumetric change is not realistic. But as we are concerned with the ideal Stirling

cycle, and its idealized efficiency, we make this assumption nonetheless.

We can use these assumptions of isovolumetric heating and cooling, and isothermal

expansion and contraction, to represent the ideal Stirling cycle on a simple pressure-

volume (p-V ) diagram, with the pressure of the working fluid plotted against its

volume. Moving radially away from the origin indicates an increase in temperature

of the working fluid. Fig. 1.3 shows the p-V diagram for the idealized Stirling cycle,

with the indicated steps roughly corresponding to those depicted in Fig. 1.1. At point

(a), we find the working fluid to be at its highest volume of V2 and lowest pressure of

P1, similar to step (a) in Fig. 1.1 where the power piston is extended resulting in a

high volume, and the working fluid has been displaced to the cold space, producing

a low gas temperature and pressure. Moving from point (a) to point (b) in Fig. 1.3,

we find the gas isothermally decreasing in volume (to V1) while increasing in pressure

(to P3), all the while staying at temperature TC . This effect is caused by the power

piston moving in and decreasing total engine volume, resulting in an increase in gas

pressure. Notice, however, that between steps (a) and (b) in Fig. 1.1, the displacer

piston also moves, shuttling some (but not yet all) of the cool air to the hot space,

where it comes into contact with the heat source. In direct disagreement with our

assumption of isothermal expansion and contraction, this would result in an increase

in average gas temperature between steps (a) and (b) in either figure, though no such

increase is evident in the p-V diagram.

Nevertheless, From point (b), the gas absorbs energy isovolumetrically as the dis-

placer piston forces it to the hot space, increasing the gas pressure from P3 to P4
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Figure 1.3: A pressure-volume diagram for the idealized Stirling cycle, with the arrows
indicating the direction of the cycle. The transitions from (b) to (c) and from (d) to
(a) are assumed to be isovolumetric (∆V = 0), and the transitions from (a) to (b) at
temperature TC and from (c) to (d) at temperature TH are assumed to be isothermal
(∆T = 0).
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and bringing it to point (c) at a higher temperature TH . Step (c) in Fig. 1.1 shows

that as the gas absorbs energy in the hot space, the power piston is extending, simul-

taneously increasing total engine volume and exposing the flaw in the isovolumetric

expansion/compression assumption. From point (c) to point (d), the gas moves along

another isotherm, simultaneously decreasing in pressure to P2 and increasing in vol-

ume to V1. This is the power stroke of the engine, or the step where the working

fluid does work on the power piston, forcing it outwards as in step (d) of Fig. 1.1.

To complete the cycle, the gas, now in the cold space, undergoes an isovolumetric

change in temperature and pressure, bringing it back to point (a) [or step (a) in Fig.

1.1] at temperature TC .

Despite its loose correspondence to the Stirling cycle undergone by a real engine,

the ideal Stirling cycle model, and its p-V diagram, are useful for determining the

theorized efficiency of the Stirling engine. Recall that the efficiency of any heat engine

is given by

e =
W

QH

, (1.2)

where W is the work performed by the engine and QH is the absorbed heat. In the

Stirling cycle, work is only performed during the two isothermal steps, where the

general form for work done during such a process is given by

W =

∫ Vf

Vi

p dV (1.3)

= nRT

∫ Vf

Vi

1

V
dV = nRT ln

(
Vf
Vi

)
.

Here we have used our assumption that the working fluid is an ideal gas, and the ideal

gas law pV = nRT , to rewrite p as p = nRT
V

, with p the pressure of the working fluid,

T its temperature (in Kelvin), V its volume, n the number of moles of gas present,

and R the ideal gas constant [15]. The terms Vi and Vf refer to the initial and final

volumes of the gas during the isothermal process, so that with reference to the steps

outlined in Fig. 1.3, we determine the work done by the gas on the piston between

(c) and (d) to be

Wcd = nRTH ln

(
V2

V1

)
,
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and the work done by the piston on the gas between (a) and (b) to be

Wab = nRTC ln

(
V1

V2

)
= −nRTC ln

(
V2

V1

)
.

To determine QH for the engine, we need to consider when in the cycle the working

fluid is absorbing heat from its surroundings. Clearly heat absorption occurs from (b)

to (c) in Fig. 1.3, when the working fluid is undergoing an isovolumetric temperature

increase, but also from (c) to (d), when the gas is isothermally expanding. Indeed, in

order for the gas to expand but have its temperature remain constant, it must absorb

energy from its surroundings [4]. Hence, we have that QH = Qbc +Qcd, with Qbc and

Qcd being the heat absorbed during steps (b)-(c) and (c)-(d) respectively. Now, step

(c)-(d) indicates an isothermal expansion, which by definition means that the internal

energy U of the gas remains constant. Working from the first law of thermodynamics,

which states that dU = dQ − dW , we have that for an isothermal process dU = 0

and hence dQ = dW so that Qcd = Wcd [16]. Since (b)-(c) is isovolumetric, no work

is done on the gas, hence dW = 0 and the first law reduces to dQ = dU = mCv∆T ,

where m is the mass of the gas, Cv is its specific heat capacity, and ∆T is the change

in temperature undergone during the process [12]. Therefore, Qbc = mCv (TH − TC),

and Eq. (1.1) becomes:

e =
Wab +Wcd

Qbc +Qcd

=
Wab +Wcd

Qbc +Wcd

=
nR (TH − TC) ln (V2/V1)

mCv (TH − TC) + nRTH ln (V2/V1)
.

Making the substitutions β = TC/TH, γ = V2/V1 , and mCv = 1/2 ηR, with the integer

η indicating the degrees of freedom of a molecule of the gas, our expression for e

simplifies to

estirling =
1− β

1 + ηβ
2ln(γ)

. (1.4)

Evidently, then, the efficiency of a Stirling engine is entirely dictated by the ratio

of expanded gas volume to compressed gas volume (the compression ratio γ), the ratio

of the heat sink temperature to the heat reservoir temperature (the temperature ratio

β), and by the chemical properties of the working fluid (whose molecular structure

dictates η). Note that Eq. (1.2) does not consider frictive or other mechanical losses
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of efficiency. But even so, since γ, β, and η are all real numbers greater than zero

(volumes are positive-valued so γ > 0, temperature is measured in Kelvins so β =
TC/TH > 0 for all values of TC and TH , and η is defined as a positive integer), it follows

from Eq. (1.2) that e < 1 for all V1, V2, TC , TH , and η. Even without considering

heat losses or mechanical friction, Eq. (1.2) predicts a maximum efficiency always

lower that 100%, a frustrating and unavoidable consequence of the second law of

thermodynamics and the hugely important concept of entropy [3].

Colloquially put, entropy is a measure of the amount of disorder in a system.

Hence, a cluttered desktop is in a higher state of entropy than the same desktop

whose clutter has been organized into stacks and piles. Perhaps a more relevant ex-

ample pertains to the distribution of energy among gas molecules in a sealed container

(the interior of a Stirling engine, perhaps?): such a chamber containing a large num-

ber of energetic molecules on one side and very few on the other is in a lower state

of entropy than if the energy in the gas were dispersed evenly among all constituent

molecules. We observe the latter case in nature because it is a state of higher proba-

bility than the former [15]. Imagine allowing a few billion gas molecules, half having

some high energy and the rest having a lower energy, to suddenly and freely enter

a closed, evacuated chamber and redistribute themselves randomly for some amount

of time. The likelihood of finding, at the end of this redistribution period, all the

high-energy molecules on one side of the chamber and all the low-energy molecules

on the other is truly miniscule, negligible; vastly more favorable is some relatively

uniform distribution of high- and low-energy molecules, and this, appropriately, is

what we observe in nature.

The facts that every potential state of the components of a thermodynamic system,

such as the gas molecules in a Stirling engine, has a corresponding statistical proba-

bility of existing, and that nature tends towards those states having high probability,

introduce a definite ‘arrow of time’ into the evolution of thermodynamic systems.

Such systems will tend to evolve in time according to which potential states are most

likely. And since the entropy of a state is directly related to its relative probability

of existing (relative to the other available states, that is), we deduce that thermody-

namic systems always evolve in time in such a way as to increase the entropy of the

system and its surroundings [3].1 This conclusion, in fact, is the most general form of

the second law of thermodynamics, and applies directly to Stirling engines when we

realize that the (ideal) Stirling engine is precisely one of the thermodynamic systems

1This statement, generally taken to be true, has nevertheless successfully been challenged by I.
Prigogine and T. Petrosky in [17].
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to which the second law pertains. Since a Stirling engine operates in a cycle, start-

ing in one state, evolving in time, and ultimately returning to that same state, the

entropy of the gas in the engine cannot change over one complete cycle. However, ac-

cording to the second law, the entropy of the engine and its surroundings will increase

over time. If we consider the heat source and heat sink as part of the surroundings

(reasonable because a heat source isn’t really part of the engine itself, though it acts

upon it, and is at least distinct and physically separated from the working fluid), we

may ascertain that entropy is produced during the heating and cooling of the working

fluid [3].

To see where this entropy comes from, we must turn to a more precise and technical

(yes, mathematical) interpretation of entropy. Defined in terms of the infinitesimal

quantity of heat dQ and the temperature T , we have that the change in entropy ∆S

of a system is given by

∆S =

∫
dQ

T
≥ 0 , (1.5)

where the integral is taken along the path of change (moving, for instance, from Qa to

Qb), and where the condition ∆S ≥ 0 is required by the second law of thermodynam-

ics. In real engines, such as that diagramed in Fig. 1.1, as the displacer moves from

the hot space to the cold space, the air that is consequently forced to the hot space

is at a lower temperature TC than the the heat source itself, running at a balmy TH .

Hence by Eq. (1.5) the entropy lost by the heat source as it gives up a total amount

of heat heat QH to the cold(er) working fluid is simply ∆Slost = QH/TH, whereas the

entropy produced during the heat exchange is ∆Sprod = QH/TC. But since TC < TH ,

we have that ∆Sprod > ∆Slost, meaning that the entropy produced during the heat

exchange is greater than the entropy lost [3]. But looking at Eq. (1.5), we see that

if we integrate over a complete cycle, for instance from Q1 back to Q1, we find that

∆S = 0. So for one complete Stirling cycle [point (a) to point (a) in Fig. 1.3], we

should have that ∆Scycle = 0 [11]. But so far we have a net increase in entropy

∆Snet = ∆Sprod−∆Slost > 0, so satisfying Eq. (1.5) requires the expulsion of entropy

equivalent to ∆Snet during the cooling stage of the cycle. The result is that the en-

gine must dump some amount of waste heat into its surroundings during the cooling

stage. This waste heat, as the name implies, is what constrains real heat engines to

run at less than 100% efficiency: a significant amount of the absorbed heat QH passes

through the engine without being converted into mechanical work.



16 Chapter 1. Physics of the Stirling Cycle

1.3 Maximizing Efficiency and The Carnot Limit

We know from the second law of thermodynamics, and consequently from Eq. (1.5),

that no heat engine (or engine in general, for that matter) can be perfectly efficient

under any condition. This constraint then begs the question: how efficient can a heat

engine be, and how will such a maximally efficient engine operate? As suggested in

the previous section, the game we play in designing a maximally efficient engine is one

of minimizing the production of entropy. To do so, we first focus on the expansion and

compression processes inherent to any heat engine, and try to minimize the entropy

produced during expansion, thereby also minimizing the entropy (manifested as waste

heat) that must be expelled during compression. We know that the entropy lost by

the heat source during expansion is QH/TH, whereas the entropy gained by the gas is
QH/Tgas , where Tgas is the temperature of the gas immediately prior to heating. The

entropy produced during expansion is simply the difference between the two such that

∆Sexpand =
QH

Tgas

− QH

TH
. (1.6)

Now if Tgas = TH , we see immediately that Eq. (1.6) reduces to zero, indicating that

no new entropy has been produced during the heating stage under this condition. We

seem to have satisfied our goal of minimizing increases in entropy by setting Tgas = TH ,

but unfortunately such a temperature condition precludes any heat transfer between

the heat source and the working fluid, heat transfer without which expansion cannot

occur and the engine cannot run at all [3]. So instead, we make Tgas infinitesimally

less than TH so that heat transfer can still occur. By letting the gas expand infinitesi-

mally slowly during heat exchange, we can keep Tgas both constant and infinitesimally

less than TH , thereby keeping ∆S = 0 during the expansion step, as desired. To keep

Tgas constant, we require the gas to expand isothermally during the heating stage.

Similarly, during the compression step when the gas is releasing energy to the heat

sink, we want to keep Tgas constant and infinitesimally higher than TC to avoid pro-

ducing new entropy while still allowing for heat exchange. These conditions mandate

an isothermal compression.

Though the expansion and compression processes are most susceptible to produc-

ing new entropy, the intermediate stages analogous to steps (b)-(c) and (d)-(a) in

Fig. 1.3, are still avenues for potential entropy production. After all, entropy is a

function of temperature [see Eq. (1.5)], and during these two remaining steps the

gas temperature does change. To minimize the entropy produced during these steps,

we need the gas to move from TH to TC (more correctly, from just below TH to just
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above TC) and back without heat being transfered to or from the gas. That is, we

want ∆Q = 0 during these processes, meaning that the gas must move adiabatically,

or without heat transfer, between the two temperature extremes [16]. This completes

the cycle: we have an isothermal expansion and heat transfer at TH , then an adi-

abatic expansion dropping Tgas to TC , then an isothermal compression at TC , and

finally an adiabatic compression bringing Tgas back to TH . These are the four steps

of our entropy-minimizing cycle, known as the Carnot cycle, proposed by the French

scientist Sadi Carnot in 1824, and are shown on a p-V diagram in Fig. 1.4 [3].

The natural question at this point is, well, how did we do? That is, how efficient

is the Carnot cycle? Proceeding from Eq. (1.2) by following an argument similar to

that which led to Eq. (1.4), we determine that the efficiency of an engine operating

in a Carnot cycle ecarnot is given by

ecarnot = 1− TC
TH

. (1.7)

This is the famous Carnot efficiency, and is curiously dependent only on the temper-

atures of the heat source and heat sink. This surprising result allows us to alter the

efficiency of a Carnot engine simply by manipulating the temperature ratio TC/TH;

decreasing TC or increasing TH , or both, will serve to increase the efficiency of the

engine. Furthermore, we note that ecarnot approaches 1 (or 100%) as TC approaches

zero, but as TC cannot actually be zero (remember, temperatures here are measured

in degrees Kelvin, so TC = 0 implies TC is at absolute zero), we find that ecarnot < 0

no matter what. Again, as always, the second law of thermodynamics exerts its

dominance.

Even though it still predicts efficiencies resolutely less than 100%, the Carnot

efficiency in fact places an upper bound on the efficiency of any heat engine. That

is, for any heat engine, be it a Stirling engine, steam engine, or other, its efficiency

is less than that of a Carnot engine operating under the same heat source and heat

sink temperatures [15]. Indeed, by looking at Eq. (1.4), which gives the efficiency of

a Stirling engine, we see that the numerator is precisely the Carnot efficiency, and

that the denominator is always a number greater than 1. Hence, estirling < ecarnot for

all temperatures TC and TH .
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1.4 Heat Regeneration and Recovering Carnot Ef-

ficiency

The reason Stirling engines are less efficient than Carnot engines is that during the

two isovolumetric heat transfer stages, not all the heat absorbed or expelled comes

from heat sources or heat sinks at temperature TH or TC , respectively [18]. Since

heat transfer cannot occur instantaneously, we can think of the isovolumetric heat

exchange processes as though the gas were being exposed to a series of progressively

warmer (or cooler) thermal reservoirs, with the transition between each having an

associated entropy change. The closer the temperature of one of these reservoirs is to

Tgas, the less efficient the heat transfer between the gas and the reservoir [18]. As the

Carnot cycle assumes only two thermal reservoirs, it escapes these efficiency losses

entirely.

In order to improve the efficiency of the Stirling engine, a beautifully clever device

known as as a regenerator can be incorporated into the engine design which essen-

tially takes the place of those extra thermal reservoirs implicit in the isovolumetric

heat exchanges. A regenerator is any device which can store waste heat from the

cooling stage for use in the subsequent warming step, thus minimizing heat loss to

the environment [14]. Typically the regenerator takes the form of a wire mesh or

some other porous, thermally conductive medium through which the working fluid

flows in moving between the hot and cold spaces of the engine. Fig. 1.5 offers a modi-

fication to the engine schematic presented in Fig. 1.1 whereby a regenerative channel

has been included between the hot and cold spaces of the engine. Notice that the

diameter of the displacer piston “D” has been increased, eliminating the annular gap

between the displacer and its cylinder, so that the displacer now forms an airtight seal

within its cylinder. Consequently, as the displacer piston moves through its stroke,

the working fluid is forced from one side of the engine to the other through the regen-

erative channel and the regenerator itself. Air coming from the hot space warms the

regenerator as it moves to the cold space, whereupon the air cools the regenerator as

it returns back to the hot space, thus establishing a temperature gradient across the

regenerator. That is, this process of being alternatively heated and cooled eventually

makes the temperature of one end of the regenerator (the end nearest the hot space)

close to TH , and the other end close to TC .

The effect of this established temperature gradient is that as the cool working

fluid is forced to the hot space, its temperature Tgas gradually increases from TC to

just slightly less than TH (call it Tgas = TH − ε, with ε� TH) so that when the gas is
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absorbing heat from the heat source, the entropy produced, by Eq. (1.6), is simply

∆Sheat =
QH

TH − ε
− QH

TH

=
εQH

TH (TH − ε)
,

which approaches zero as ε goes to zero. Similarly, as hot air moves to the cold space,

it gives off heat to the regenerator so that by the time it enters the cold space its

temperature is TC + ε so that only minimal heat (entropy) must be expelled as waste.

If this regenerator functions perfectly, that is, captures all the heat given off by the

gas as it cools to TC , and returns all that stored heat, without loss, to the gas during

the heating stage, then ∆Sheat = ∆Scool = 0, and we have, in effect, reduced the

Stirling cycle to a Carnot cycle by eliminating all thermal reservoirs except those two

at TH and TC [18]. The adiabatic heating and cooling processes of the Carnot cycle

have been replaced by corresponding isovolumetric transitions during which perfect

regeneration ensures that ∆Q = 0, or that no heat is lost to, or absorbed from, the

surroundings, precisely the condition for an adiabatic transition [18]. Hence, under

the condition of perfect heat regeneration, the efficiency of the Stirling cycle reduces

to that of the Carnot cycle [10, 19].

While perfect regeneration is impossible to achieve in practice, partial regeneration

is easily implemented and is often implicit in many engine designs. For instance, even

the simple engine diagramed in Fig. 1.1, and, indeed, the actual engine used in this

study, utilize an albeit simplistic regenerator: the very displacer cylinder itself. The

annular gap between the displacer piston and the inner cylinder wall serves as the

regenerative channel, and the metal walls of the cylinder as the regenerator itself. As

air is forced back and forth through the annular gap, a temperature gradient is set

up between the hot and cold ends of the cylinder just as one was established between

opposite ends of the regenerator in Fig. 1.5, with more or less the same result: the gas

is warmed before it reaches the hot space by the very heat energy it transfered to the

regenerator in moving to the cold space. The regenerative effect may be increased by

shrinking the size of the annular gap, thereby forcing more air into contact with the

cylinder wall when passing around the displacer, and increasing total heat transfer to

and from the gas.
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Figure 1.4: A pressure-volume diagram for the Carnot cycle, with the arrows indicat-
ing the direction of the cycle. The transitions from (b) to (c) and from (d) to (a) are
adiabatic (∆Q = 0), and the transitions from (a) to (b) at temperature TC and from
(c) to (d) at temperature TH are isothermal (∆T = 0).
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Figure 1.5: A schematic diagram illustrating a possible means of implementing a
regenerator into a gamma-type Stirling engine. The regenerator itself is assumed to
consist of some porous, thermally conductive material such as wire mesh, and resides
within a regenerative channel connecting the hot and cold spaces of the engine. As
the displacer piston shuttles the working fluid back and forth, it passes through the
regenerator, alternately heating and cooling it, thereby establishing a temperature
gradient illustrated as a color spectrum.





Chapter 2

Power Output and Predictive

Modeling

So far we have largely been considering the efficiency of the Stirling engine, an ap-

proach that has been useful for exploring and giving a thermodynamic formalism to

the Stirling cycle, and for introducing the core concept of entropy. However, our anal-

yses and conclusions to this point are insufficient for elucidating the central question

of this thesis: How much power can a Stirling engine produce, and how well can this

value be predicted? To begin tackling this question, we leave behind our discussions

of efficiency and we abandon our conception of the Stirling engine as carrying out a

repeating cycle of thermodynamic processes (not that this isn’t true). Instead, we

develop a mathematical formalism for describing changes in the pressure of the work-

ing fluid during engine operation, and from this determine how much work the fluid

does on the pistons, ultimately allowing us to derive expressions predicting how much

power the engine can produce. Unlike the methods used to derive the efficiency of the

Stirling engine, this method for predicting power output does take into account actual

physical properties of the engine, namely relevant dimensions such as piston stroke,

piston cross-sectional area, and phase angle. This is a marked transition as these

properties played no role in the purely thermodynamic analysis of Chapter 1, which

treated the engine as some arbitrary entity whose sole requirement was to somehow

perform the Stirling cycle outlined in Fig. 1.3. That is, our methods so far have com-

pletely ignored everything pertaining to how the engine actually works: its layout,

total contained volume, the sizes (and number) of its pistons, its compression ratio,

phase angle, even the magnitude of the temperature differential to which the engine

is subjected [3]. Bringing these quantities (and others, as shall be seen) back into

the mix means that while the equations we derive for predicting power output can
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apply to all Stirling engines, by specifying values for these relevant quantities we can

collapse our equations into describing the power output of a single, real engine. The

thermodynamic analysis of before could not accommodate this degree of specificity

as it treated all Stirling engines as literally identical.

2.1 Defining Power

When we speak of the power output of an engine, what we’re in truth referring to is

how much work that engine can perform in a given amount of time. That is, power

P is defined as the rate at which work W is performed, giving

P =
∆W

∆t
, (2.1)

where ∆t is the amount of time, in seconds, taken to perform an amount of work

∆W [12]. More broadly, power can be defined as the rate at which energy E is

transformed, yielding the more general expression P = ∆E
∆t

[20]. But the change in

energy ∆E is simply the work W performed, if any, plus the heat H transferred, if

any. As the Stirling engine does not induce or perform any heat transfer (though it

certainly depends on heat transfer to operate), we have that H = 0 and ∆E = ∆W ,

reducing the above general expression for power to the more specific case of Eq. (2.1).

For the Stirling engine, power is extracted at the crankshaft, meaning that the

crankshaft is the component of the engine used to do work on some other body: a

generator, a fan, a gearbox, etc. As the engine makes the crankshaft rotate, we must

be dealing with rotational power stemming from the performance of rotational work,

or work arising from a force being exerted through some angular span. But in the

context of rotational dynamics, the concept of force needs a slight revision as not all

forces exerted on a body that is free to rotate will actually induce a rotation. Imagine

trying to rotate a bicycle wheel by pushing on the tire in a direction parallel to the

axle. In this case, the force applied won’t induce rotation since no component of the

force acts in a direction in which the wheel is free to rotate. Furthermore, imagine

trying to rotate the same wheel by pushing on the tire radially inwards towards the

axle. This method, too, will fail, this time because the force applied has no leverage

over the wheel. To induce rotational motion, then, the force applied to a body that is

free to rotate must have a component perpendicular to the axis of rotation, and this

component must act at a point on the body some nonzero distance perpendicularly

away from the axis of rotation [12]. This nonzero distance constitutes the lever arm,
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and along with the magnitude of the applied force, determines the angular acceleration

α resulting from that force. The longer the lever arm for a given force, the larger

the angular acceleration, with the classic example of this phenomenon involving the

opening of a door: the further away from the hinges one pushes, the faster the door

will open (angularly accelerate) for a force of a given magnitude and direction.

So we see that the angular acceleration of a rotating body is dependent on both

the magnitude of the applied force and the magnitude of the lever arm, and is in fact

proportional to the product of the two, a product known as a torque τ . For a given

lever arm R at whose end a force, having a component F⊥ perpendicular to the axis

of rotation, is exerted, the resulting torque is given by

τ = RF⊥, (2.2)

so that the angular acceleration α ∝ RF⊥. As a torque is what induces an angular

acceleration, it is seen as the rotational analogue to the force F in Newton’s second

law F = ma, which induces the linear acceleration a. Hence, work in a rotational

sense is dependent on the torque instead of directly on the force F , and, if the torque

is constant, is equal to that torque times the angular sweep θ through which the

torque acts. That is, for a constant torque, Wrotation = τθ. Rotational power then

becomes the rate at which this rotational work is performed, indicating that for a

constant torque τ , the power associated is just

P =
dW

dt
=

dτ

dt
θ + τ

dθ

dt

= 0 + τ
dθ

dt
= τω, (2.3)

with ω being the angular velocity of the body, or simply a measure of how quickly

it is rotating [12]. What Eq. (2.3) tells us is that if we know (or can measure) how

much torque is being produced by our Stirling engine, or rather how much torque the

engine is exerting on the flywheel, and if we further know how quickly that torque is

causing the crankshaft to rotate, we can compute the output power of the engine at

that engine speed ω. This is a crucial result and will be used later on.
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2.2 Terminology of the Senft Model

We now know how the Stirling engine produces power: work is done by the power

piston exerting a torque on the crankshaft (with, incidentally, the lever arm for the

torque equal to the radial distance from the crankshaft to the connecting rod mounting

point, or half the piston stroke) causing it to rotate; the rate at which this work is

performed is the power generated. As simple as Eq. (2.3) is, it masks the practical

difficulties associated with measuring the output power of an engine (these difficulties

will be outlined in lavish detail and with no small degree of palpable frustration

in Chapter 4), as well as the mathematical complexity involved in predicting the

output power. Despite the complexity, numerous predictive models, most of them

necessarily computerized and having only numerical solutions, have been developed

to do just this. The model presented here, an iteratIon of the first mathematical

model describing the power output of the Stirling engine proposed in 1871 by Gustav

Schmidt, is special in that it offers a closed-form expression for engine power that can

be solved analytically with well-known methods. The Schmidt model as presented by

Senft in [2] depends on three quantities determined by the physical dimensions and

layout of the engine itself: the dead volume ratio (and dead volume itself), the swept

volume ratio, and the phase angle α. In the following sections, these quantities will

be outlined with reference to the specific engine used during testing.

2.2.1 The Phase Angle α

Out of these three key quantities, the phase angle α is perhaps the simplest to con-

ceptualize as it only refers to the degree to which the displacer and power pistons are

out of sync. In practice this translates into the two pistons being in different stages of

their respective strokes at any given point in time. Consider, for instance, the common

bicycle, a “curious vehicle” because “it’s passenger is its engine” [21]. In the case of

this superior vehicle, the pedals and crank arm assembly constitute the crankshaft of

the passenger-as-engine, and the angle between the two pedals constitutes the phase

angle between the legs-as-pistons. That is, treating the cyclist as an engine and her

legs as pistons, we note that her piston-legs are constrained to be out of sync, or out

of phase, by 180◦, meaning that when one foot is at the top of the stroke (pedal at

12 o’clock), the other is at the bottom (pedal at 6 o’clock). The reason for this phase

difference is to smooth out power transfer. Imagine the jerky sensation that would

result from both legs moving perfectly in phase: the power stroke, when both legs are

pushing down on both pedals, would be ridiculously powerful compared to the shared
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return stroke, causing sporadic acceleration. Instead, with both legs perfectly out of

phase, the weak return stroke of one leg is compensated for by the power stroke of

the other, resulting in relatively constant power transfer to the wheels.

The phase angle on the Stirling engine, however, is not present to smooth the

power transfer from the power piston to the crankshaft. Instead, it exists to allow

time for the working fluid to expand when in the hot space and contract when in the

cold space before the effects of this expansion or contraction are utilized by the power

piston. Heat transfer from the heat source to the working fluid, or from the working

fluid to the heat sink, cannot happen instantaneously, and hence these processes must

be given time to occur before the power piston begins its power or compression strokes

respectively. The phase angle, along with the engine speed ω, determine the allotted

time period for expansion or compression, so that for a given engine speed, the larger

the phase angle α, the more time the working fluid has to undergo heat transfer

before the power piston is in a position to capitalize on the resulting expansion or

compression.

With this in mind, it may be tempting to make the power and displacer pistons

move 180◦ out of phase for this configuration would maximize the amount of time

available for heat transfer both to and from the working fluid. However, this config-

uration would result in the power piston beginning its compression stroke with the

working fluid still in the cold space, so that only when the power piston has reached

the end of its stroke has the displacer piston managed to force the working fluid en-

tirely to the hot space where it can begin to heat up. Hence the power piston will

begin its subsequent compression stroke while much of the working fluid is still busy

expanding. Similarly, the power piston will begin its power stroke while much of the

working fluid is in the process of dissipating heat energy to the heat sink, thereby

undergoing compression, or the exact opposite of what we need to induce a power

stroke. Setting α = 90◦ then seems like a reasonable compromise, and as it turns out

this is a common phase angle for many Stirling engines, and is the optimal angle for

some.

2.2.2 The Swept Volume Ratio κ

The swept volume ratio, which we shall follow Senft [2] in calling κ, refers to the

ratio of the volumes swept out by the power and displacer pistons. We will follow the

Schmidt convention by more specifically defining κ as the ratio of the volume swept

out by the power piston to that swept out by the displacer piston. Fig. 2.1 provides



28 Chapter 2. Power Output and Predictive Modeling

a visual of what a piston’s swept volume is for the specific case of the displacer piston

of the engine used throughout this study. As seen in the figure, a pistons swept

volume is simply its cross-sectional area multiplied by its stroke, or the total volume

of working fluid the piston can move out of the way in the course of its stroke. In the

automotive and motorcycle industry, when one talks of an engines displacement, one

is actually referring to the total swept volume of its pistons, not the total volume of

the engine cylinders as one might be led to think.

Despite how mathematically simple the swept volume, and the swept volume ratio,

are, Fig. 2.1 nevertheless highlights a few aspects of the displacer piston of the engine

used here that could cause confusion in understanding its swept volume. The first is

that the piston is entirely enclosed within its cylinder, most unlike the power piston

or pistons of motorcycle engines, all of which close off their respective cylinders at one

end like the plunger of a syringe. The fact that the displacer piston resides entirely

within its cylinder invites the question of whether we are to include the total volume

of the piston itself in calculating its swept volume. We certainly don’t in the case of

the power piston, for from the point of view of the working fluid within the power

cylinder, the piston appears as nothing more than a circular plane moving back and

forth, having no length or volume. But in the case of the displacer in Fig. 2.1, the

piston itself occupies a volume within the engine space, so it seems reasonable to

suppose that it sweeps out a volume equal to its cross-sectional area multiplied by

the sum of its length and its stroke. To do so would be incorrect, however. Taking

swept volume to mean, again, the total volume of working fluid the piston can move

out of the way in the course of its stoke, we note that the volume enclosed by the

displacer piston itself cannot factor into its swept volume as the working fluid is

permanently barred from that volume by virtue of it being enclosed, and hence can’t

ever be displaced from it. In other words, the volume enclosed by the piston itself

is never available to the working fluid, regardless of the position of the piston along

its travel. Instead of including that volume in a calculation of the displacer pistons

swept volume, we instead need to eliminate it from the total volume of working fluid

in the engine at any given point in time.

The second characteristic of the displacer piston that makes determining its swept

volume difficult is the presence of the piston rod to which the displacer is attached.

This rod complicates the swept volume of the displacer piston for a similar reason

as the piston being fully enclosed within its cylinder: part of the rod resides within

the engine space at all times and at all points along the stroke, and hence occupies a

volume never available to the working fluid. If we take the piston in Fig. 2.1 to be
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Figure 2.1: A diagram illustrating the swept volume for the type of displacer piston
found in the engine used in this work. Note, particularly, the piston rod which joins
to the displacer connecting rod at one end, and, passing through an airtight bushing,
enters the engine space and fixes to the displacer piston itself at the other. This rod
sweeps out a non-negligible volume in much the same way the piston itself does. The
swept volume for the displacer piston is simply the cross-sectional area of the piston
multiplied by the length of the stroke (the length of the piston, perhaps surprisingly,
is not relevant). The swept volume for the rod is its cross-sectional area multiplied
by the difference between the length of the stroke and the length of rod remaining in
the chamber when the piston is at the top of its stroke (as it is in the figure).
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at the top end of its stroke, we see that even with most of the piston rod extending

out of the engine space, some small amount always remains within. This remaining

nub is needed to prevent the piston from colliding with the end of its cylinder at

the extreme top of its stroke. The volume occupied by the nub is analogous to the

volume occupied by the piston itself in that it constitutes a volume never available

to the working fluid at any point in the engine cycle, and hence can’t factor in to

a calculation of the rods swept volume. As with the piston itself, then, the swept

volume of the rod is simply its cross-sectional area multiplied by the stroke of the

piston. It follows that the swept volume for the entire displacer piston assembly is the

stroke of the piston multiplied by the sum of the cross-sectional areas of the piston

and piston rod; the volumes of the the nub and piston itself are not relevant.

2.2.3 The Dead Volume Ratio χ

The dead volume of an engine is a very dramatic term for the volume within the

engine that is not swept out by the pistons. Hence it is equal to the total engine

volume available to the working fluid (so this does not include the volume of the

displacer piston or of the small nub of piston rod remaining in the engine space at the

top of the stroke) minus the total swept volume of the pistons. The dead space ratio

χ is defined by Senft in [2] as being the ratio of the dead space volume to the swept

volume of the displacer piston. The descriptor ‘dead’ indicates that this volume is

not actively traversed by the pistons. In the case of the gamma Stirling diagrammed

in Fig. 1.1, the dead volume includes all the volume in the annular gap, the volume

of the chamber connecting the power cylinder to the displacer cylinder, the volume

remaining in the hot space in step (a), the volume remaining in the cold space in step

(c), and the volume remaining at the bottom (left-hand side) of the power cylinder

in step (b). In internal combustion engines, the dead space volume is the volume

of the combustion chamber, or the volume in the cylinder when the piston is at the

top of its stroke, the gas in the cylinder is maximally compressed, and the spark

plug is about to fire, beginning a power stroke. The compression ratio, or ratio of

the expanded volume to compressed volume (V2/V1 from Fig. 1.3), for the internal

combustion engine can then be written in terms of the dead space volume as

compression ratio =
power piston swept volume + dead space volume

dead space volume
.

For this equation to apply to the gamma Stirling engine with a displacer piston of the
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type shown in Fig. 2.1, we must modify the numerator to include the swept volume

of the displacer piston rod and the fact that the piston rod and power piston are out

of phase so that the minimum or maximum engine volume is not necessarily reached

when the power piston is at the extreme bottom or top of its stroke, respectively. This

is due to the displacer piston rod (but not the displacer piston itself) affecting the

pressure of the working fluid, albeit to a much lesser degree than the power piston.

2.3 Deriving the Model Equations

2.3.1 Assumptions

Reducing the convoluted, interrelated workings of the Stirling engine to a set of

mathematical equations is no mean feat. Getting a closed-form expression for power

out of the deal is even more impressive, and requires that we make a number of

simplifying assumptions, some of them similar to those made in Section 1.2 when

we formalized the ideal Stirling cycle. In [2], Senft outlines the assumptions of the

Schmidt model presented therein, which are:

(1) The motion of both the power and displacer pistons is assumed to be perfectly

sinusoidal;

(2) The working fluid behaves like an ideal gas in accordance with the ideal gas law,

Eq. (1.1);

(3) The working fluid expands isothermally in all engine spaces;

(4) The regenerator is ideal so that heat regeneration is perfect with no waste heat

[10];

(5) The instantaneous pressure of the working fluid is the same across all engine

spaces;

(6) No air leaks out of the engine space through imperfect seals or otherwise.

Whether or not these assumptions are reasonable (that is, realizable in practice) is

an important consideration, and will be discussed presently.
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2.3.2 The Senft Model

The basic idea of the Senft model for predicting the power output of gamma Stirling

engines is to develop a mathematical relationship between the power output of the

engine (work W per unit time) and two salient characteristics of the working fluid:

its volume V and pressure p. To that effect, deriving the Senft model involves first

determining the volume of working fluid in the engine at any point during the engine

cycle, then using the ideal gas law, Eq. (1.1), to determine the resulting instantaneous

pressure which can be incorporated into Eq. (1.3) to determine the work done per

cycle, as desired. The work done per cycle multiplied by the number of cycles per

second gives the power output of the engine at that speed. Following this prescription,

we begin by developing equations that describe the total, instantaneous volume of

working fluid in the engine (that is, the volume at any given moment in time). In

his derivation, Senft first divides the engine into a hot space and a cold space, each

one having a bit of a strange definition. As seen in Fig. 2.2, the hot space is the

half of the swept volume of the displacer piston closest to the heat source, and the

cold space is the half of the displacer swept volume closest to the heat sink, plus the

swept volume of the power piston. Hence, the hot space volume VH and the cold

space volume VC are what we may call active volumes, or volumes traversed (swept

out) by at least one of the pistons. This implies that the total engine volume Vtot is

the sum of the cold space and hot space volumes, plus any volume not swept through

by either piston, namely the dead volume VN , so that Vtot = VH + VC + VN .

As for actually determining VH and VC , Fig. 2.2 may be of aid. Senft ‘sets his

clock’ at t = 0 when the power piston is at the top of its stroke, or at top dead center,

as reflected in the figure. This way, the instantaneous angle of the power piston

crank is simply ωt, with ω the engine speed in cycles per second (measured in Hertz,

Hz, with units of s−1). Due to the phase separation α between the two pistons, the

instantaneous angle of the displacer crank with respect to the horizontal (the plane

in which the power piston crank arm resides when the piston is at top dead center)

becomes ωt + α. Then with reference to the figure, one should be able to convince

one’s self that

VH =
VD
2

(1 + cos(ωt+ α)) . (2.4)

Certainly, this equation makes sense in the two extremes of (ωt + α) = 0 and (ωt +

α) = π. In the former case, with the instantaneous angle of the displacer crank

equal to zero, the displacer piston must be at top dead center and we have that
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Figure 2.2: A diagram illustrating the hot and cold spaces, as defined by Senft, of a
gamma type Stirling engine. Note that the two spaces consist only of volumes swept
out by the pistons; the remaining volume (the white space within the black-outlined
engine space) is the dead volume VN . Not shown is the contribution to the cold space
volume from the swept volume of the piston rod. As shown, the power piston is at
the top of its stroke (t = 0), and the displacer, leading by 90◦, is halfway through its
travel.

Quantity Symbol

Hot space volume VH
Cold space volume VC
Total engine volume Vtot

Displacer piston swept volume VD
Power piston swept volume VP
Total swept volume VT
Dead volume VN
Engine speed ω
Temperature ratio (TC/TH) τ
Swept volume ratio (VP/VD) κ
Dead volume ratio (VN/VD) χ

Table 2.1: A table providing key notation used throughout the Senft model.
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VH = VD/2(1 + 1) = VD, indicating that the hot space now consists of the entirety

of the displacer swept volume. If we imagine that the displacer in Fig. 2.2 were to

move completely to the cold side of the cylinder (top dead center), the swept volume

occupying the cold space would be transfered to the hot space, VH would indeed equal

VD, and the figure would look more like Fig. 2.1. In the latter case, corresponding to

the displacer piston being at bottom dead center, or all the way towards the hot side

of the cylinder, we have VH = VD/2(1 + (−1)) = 0, which makes sense as all the swept

volume is now in the cold space, thus emptying the hot space.

The portion of the cold space within the displacer cylinder is then the swept

volume of the displacer VD minus the volume in the hot space VH , whatever it happens

to be (remember, it depends on t). The total cold space volume VC is this portion

plus the contribution from the swept volume of the power piston, giving

VC = VD − VH +
VP
2

(1 + cosωt), (2.5)

with the last term being the power piston contribution. This equation makes sense

at top dead center with respect to the power piston (ωt = 0) because in this case, it

predicts the power cylinder contribution to the cold space to be the total power piston

swept volume VP , as desired. Equation (2.5) also checks out at bottom dead center

(ωt = π) since it predicts the power piston contribution to VC to be zero, which we

would expect since with the piston slammed into its cylinder, no working fluid can be

present in the cylinder that could contribute to VC . As the sum of the hot, cold, and

dead space volumes, the total instantaneous engine volume V (t) can be written as

V (t) = VD +
VP
2

(1 + cosωt) + VN ,

which can be rewritten in terms of the swept volume ratio κ and the dead space ratio

χ (see Table 2.1) as

V (t) = VD

(
1 +

κ

2
(1 + cosωt) + χ

)
. (2.6)

In order to compute the work per cycle of the engine with instantaneous volume

V (t), we are ultimately going to have to use Eq. (1.3), which calls for the quantities

dV and p. The latter is the pressure of the working fluid within the engine space and

will be computed momentarily. To determine the former, or the differential volume of

working fluid within the engine space, we need only take the time derivative of V (t)

giving dV
dt

from which we can extract dV . Then, in terms of the total swept volume

VT = VD + VP = VD(1 + κ), we have
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dV

dt
=

d

dt

(
VDκ

2
(1 + cosωt)

)
= −VD ωκ

2
sinωt

= − VT ωκ

2(1 + κ)
sinωt,

giving

dV = − VT ωκ

2(1 + κ)
sin (ωt) dt. (2.7)

To derive an expression for the instantaneous pressure of the working fluid from

V (t), we return to a key assumption from Section 2.3.1, namely that the working

fluid can be modeled as an ideal gas. This assumption allows us to relate V (t) to the

instantaneous pressure p(t) by way of the ideal gas law. However, we will not use the

form of the law given in Eq. (1.1), but instead will use the form where pV = NkT ,

with N the number of particles (or the number of molecules of working fluid) and k

Boltzmann’s constant [11]. Rearranging this equation slightly and substituting values

gives

p(t) = Nk
T

V

= Nk

(
TH
VH

+
TC
VC

+
TN
VN

)
=

NkTC

τVH + VC + VD
2τ

1 + τ
χ
,

with τ the temperature ratio defined in Table 2.1. Inserting our expressions for VH

and VC , Eqs. (2.4) and (2.5), we obtain
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p(t) =
NkTC

τVD
2

(1 + cos(ωt+ α)) + VD −
VD
2

(1 + cos(ωt+ α)) +
VP
2

(1 + cosωt) + VD
2τ

1 + τ
χ

=
NkTC

τVD
2

+
VD(τ − 1)

2
cos(ωt+ α) +

VD
2

+
VP
2

(1 + cosωt) + VD
2τ

1 + τ
χ

=
NkTC

VD
2

[
τ(1 + cos(ωt+ α))− cos(ωt+ α) + 1 + κ(1 + cosωt) + VD

4χτ

1 + τ

] .
(2.8)

We can tidy up this monstrosity and put it into a more suggestive form by making a

few substitutions to condense terms. Letting

Y = τ + 1 + κ+ VD
4χτ

1 + τ
,

A = κ− (1− τ) cosα,

and

B = (1− τ) sinα,

we can reduce Eq. (2.8) to

p(t) =
NkTC

VD/2(Y + Acosωt+Bsinωt)
. (2.9)

As Senft shows, however, by defining the quantities

θ = cos−1 A√
A2 +B2

,

and

X =
√
A2 +B2

such that
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Xcos(ωt− θ) =
√
A2 +B2 [cos(ωt)cos(θ) + sin(ωt)sin(θ)]

=
√
A2 +B2

[
cos(ωt)

A√
A2 +B2

+ sin(ωt)

√
1− A2

A2 +B2

]
= Acos(ωt) +Bsin(ωt),

we can further reduce Eq. (2.9) to the more tractable form:

p =
NkTC

VD/2 [Y +Xcos(ωt− θ)]
. (2.10)

Now, the phase angle α is confined to the range 0 < α < π, because if α > π

or α < 0, we encounter a situation where the displacer piston no longer leads the

power piston in the engine cycle. As a result, the Stirling cycle of Fig. 1.3 will not be

carried out, and in fact the engine will not run in its normal direction no matter the

temperature ratio τ between its hot and cold sides. It will, however, run contentedly

in reverse because then the displacer piston will once more be leading the power piston

(by an angle equal to α−π). Amazingly, if the displacer leads the power piston in the

forward direction of rotation, and kinetic energy is input into the crankshaft of the

engine so as to drive it in the opposite direction, the Stirling engine will carry out the

steps of the thermodynamic cycle of Fig. 1.3 in reverse order, and will actually act as

a refrigerator [3]! With an appropriately designed Stirling engine, it is even possible

to drive the crankshaft in reverse (with the power piston leading the displacer) with

an electric motor thus refrigerating one side of the displacer cylinder and heating the

other to the point where the cool end is iced over and the hot end is scalding. If

the electric motor is then disconnected, the Stirling engine will run in the opposite

direction, its typical forward direction with the displacer leading the power piston, off

of the temperature differential just established [5]. This unique ability results from

the fact that the Stirling engine is a true reversible heat engine [15].

Since the quantity cos(ωt− θ) in Eq. (2.10) ranges from −1 to 1, we find that the

maximum and minimum values of Eq. (2.10) are given by

pmax =
NkTC

VD/2[Y −X]

and
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pmin =
NkTC

VD/2[Y +X]
,

respectively, so that the average pressure p̄ of the working fluid (note the loss of

dependency on t—this is a time average, after all) throughout one engine cycle is

p̄ =
√
pmax pmin =

NkTC
VD/2

√
Y 2 −X2

,

which allows us to put our expression for the instantaneous pressure p(t) into its final

form:

p(t) =
p̄
√
Y 2 −X2

Y +Xcos(ωt− θ)
. (2.11)

So far we used geometrical arguments to determine the total instantaneous engine

volume V (t), Eq. (2.6), from which we derived the instantaneous pressure of the

working fluid p(t), Eq. (2.11), using the ideal gas law and a number of simplifying

substitutions. We are now fully equipped to derive an expression for the work per

cycle Wcyc of the Stirling engine. Substituting Eqs. (2.7) and (2.11) into Eq. (1.3),

and noting that the definition of dV given by Eq. (2.7) changes the integral from one

over volume to an integral over time, we get that

Wcyc =

∫
p dV

= −VT p̄ ωκ
√
Y 2 −X2

2(κ+ 1)

∫ 2π/ω

0

sinωt

Y +Xcos(ωt− θ)
dt,

where the upper limit of integration 2π/ω is simply the time taken for the engine

crankshaft to sweep out 2π radians, or one full revolution, beginning with t = 0 when

the power piston is at top dead center. Integrating the above expression gives us the

final form for the work per cycle:

Wcyc =
VT p̄ κ π (1− τ) sinα

(κ+ 1)
[
Y +
√
Y 2 −X2

] . (2.12)

Note that this expression depends only on VT , p̄, and the quantities τ , κ, χ, and α,

all of which are determined by engine dimensions and the temperature differential to

which the engine is subjected. Further note that as Wcyc indicates the work per cycle

(in Newton-meters, N ·m), the power the engine produces must equal this work times
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the cycles per second ω. That is,

Pstirling = Wcyc ω. (2.13)

This equation makes sense dimensionally since

[Wcyc] · [ω] = N ·m ·
(
s−1
)

=
N ·m

s
= [Power] .

Lastly, it is worth mentioning that Eq. (2.12) specifically predicts the cyclic

indicated work performed by the engine, where indicated work is defined as being

calculated from pressures and volumes in the engine space under the assumption that

no losses (thermal or frictive) occur in converting the energy of the expanding working

fluid into mechanical motion at the crankshaft. This type of work (or, really, this type

of work measurement) earned its name from the indicator device developed by James

Watt to record and plot pressure and volume variations within the cylinders of steam

engines. This device essentially produced a real, non-idealized p-V diagram for the

engine from which work as well as and power and efficiency could be readily calculated.

Hence, when we ultimately use Eqs. (2.12) and (2.13) to calculate theoretical power

outputs, we will more specifically be calculating theoretical indicated power outputs.

This is problematic because when we physically measure the power output of the

engine (described in the next chapter), we will be measuring the power output at the

crankshaft by applying a controlled load or brake against which the engine will have

to fight. Hence we will be measuring the brake power of the engine, not its indicated

power. Apart from how they’re measured, the difference between the two is that

brake power does take into account all losses in the engine because it is measured at

the output shaft of the engine. To compute brake power from indicated power, then,

one would have to factor in the friction between pistons and cylinders, connecting

rods and pivots, and the crankshaft and its pivots, and deduct the effects of these

frictive forces, among other sources of power loss, from the indicated power. Hence,

for any real engine, the brake power is necessarily less than the indicated power. We

will have to account for this difference in our analysis.





Chapter 3

The Test Rig

3.1 Engine Design

In order to test the validity of the predictive model outlined in Chapter 2, a simple,

gamma-type Stirling engine, originally manufactured by Solar Engines of Phoenix,

AZ, was heavily modified to allow for variation of both the phase angle α and the

swept volume ratio κ. To that effect, new flywheels were made that allowed the stroke

of both the displacer piston and the power piston to be adjusted independently, and

for the phase angle to be manipulable independently from the strokes. Additional

modifications included the manufacture of new connecting rods that could accom-

modate variations in stroke, a new crankshaft, an upgraded heat source, and a new

mounting block for the engine and its heat source. These modifications allow the

parameters α and κ to be varied independently and repeatedly so that their effect

on the power output of the engine can be recorded consistently and accurately, and

ultimately be compared to the theoretical predictions of the Senft model.

Fig. 3.1 provides a labeled image of the engine in its original form, showing most

of its components. Hidden from view are the displacer piston, which resides inside

the displacer cylinder, the power piston connecting rod, and most of the crankshaft,

which supports and connects the two flywheels and is the component from which

power output is measured. A few design features of the engine deserve special notice:

firstly, both flywheels only have one point of attachment for each respective connecting

rod. While perfectly adequate for the proper function of the engine, a single mounting

point does not allow for the stroke of either piston to be adjusted. After all, the

stroke is entirely determined by the radial distance between the center of the flywheel

(where it mounts to the crankshaft) and the mounting point itself, and is in fact

equal to twice that radial distance. Secondly, the set screws, one per flywheel, are the
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Figure 3.1: The engine, a Solar Engines of Phoenix, AZ, Stirling #1, in its original,
unmodified form. Note the set screws on the flywheels (only one is visible) that
allow for phase angle adjustment, and the solitary mounting point on each flywheel
for its respective connecting rod. This latter feature of the original engine design
does not permit adjusting the stroke of either piston. (Original image taken from:
http://www.bullnet.co.uk/shops/test/images/solar1.jpg)
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sole element anchoring the flywheels to the crankshaft; the fit between the flywheels

and crankshaft is ever so slightly loose, a sure connection between the two requiring

pressure from the set screw. The set screws are furthermore wholly responsible for

maintaining the phase angle α. Loosening a set screw and rotating its corresponding

flywheel about the crankshaft while holding the other stationary changes the angle

between the connecting rod mounting points of the two flywheels, which is precisely

the angle α in Fig. 1.2. Lastly, the heat source for the original engine is a simple

alcohol flame, the wick appearing as a white tuft protruding from the chromed-out

fuel reservoir cap. While sufficient for casual operation of the engine as a display

piece, such a heat source is too inconsistent and uncontrollable for the strict rigors of

this experimental test rig.

3.1.1 Flywheels and Connecting Rods

The original engine flywheels constrained the strokes of both the power and displacer

pistons to 15.5 mm, giving a permanent swept volume ratio of κ = 0.58. (Though

each piston had the same stroke, the difference in piston radii meant that each piston

swept out a different volume during its stroke, giving κ 6= 1.) Engine dimensions, most

notably the depths of the power and displacer cylinders, kindly introduced a further

constraint to the range of permissible strokes. No matter what clever arrangement of

flywheels and connecting rods, the fact remains that the piston stroke cannot be so

large that the piston bottoms out in its cylinder (pushed in too far) or is pulled from

it completely at the extreme ends of its travel. Similarly, the stroke can’t be made

short to the point where the connecting rod mounting point on the flywheel interferes

with the junction between the flywheel and the crankshaft. Since the mounting point

is simply a threaded hole drilled into the flywheel into which a screw, serving as a

pivot for the connecting rod, is inserted (see Fig. 3.3), the radial distance between

the hole for the crankshaft and the connecting rod mounting hole (r1 or r2 in Fig.

1.2) must be sufficiently large to ensure the two holes do not overlap. What’s more,

this radial distance must be large enough so that sufficient material exists between

the two holes to ensure structural integrity of the flywheel.

To establish the range of permissible strokes, we need to determine how far the

piston can travel into its cylinder before bottoming out, and how far it can travel

out of its cylinder while still leaving enough inside to preserve the hermetically sealed

engine environment and retain structural integrity. Pull the piston out too far and

not only could some working fluid potentially escape, but side loads (any force acting
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antiparallel to the piston’s velocity vector) exerted on the piston by the connecting

rod as it attempts to force the piston back in its cylinder could cause the piston to

bind up, halting and perhaps destroying the engine. To avoid such a catastrophe, we

require some minimum percentage, call it the retention percentage σ, of the piston to

remain in the cylinder even at the extreme top of its stroke. For this engine, we set

σ ≈ 0.25, meaning that roughly 25% of the piston remains within the cylinder at the

top of its stroke.

As suggested by Fig. 3.2, a number of engine dimensions must first be measured

before maximum stroke can be calculated: the lengths of the piston `pis, the cylinder

`cyl, and the connecting rod `rod, as well as the radial distance r between the center

of the flywheel and the connecting rod mounting pivot, and the total distance from

the crankshaft to the bottom of the cylinder `tot. Since the stroke is equal to 2r, we

want to find r in terms of the other quantities. With reference to Fig. 3.2, we see

that configuration (a) requires

r + `rod + `pis < `tot , (3.1)

and from (b) we ascertain the restriction

(`rod − r) + (1− σ) `pis + `cyl < `tot . (3.2)

Due to time constraints, it was not feasible to alter `cyl , `tot , or `pis as adjusting

any one of these parameters would require extensive, high-tolerance machining of

various engine components. Hence, those were all taken as fixed quantities with r

and `rod variable. The length of the connecting rod was chosen to remain variable

because manipulating r and `rod in concert allows for a wider range of permissible

strokes than the manipulation of r alone. Recall that the stroke is solely dependent on

r, so increasing r while decreasing `rod by the appropriate amount to avoid bottoming

out the piston still results in a longer stroke. After grouping our constant terms `cyl ,

`tot , and `pis, it follows from Eqs. (3.1) and (3.2) that

`rod +X < r < Y − `rod , (3.3)

where X = (1− σ) `pis + `cyl − `tot and Y = `tot − `pis are both constants determined

by measurable quantities.

Unfortunately, this equation masks the true limitations on r, namely the depth of

the cylinder `cyl and the desired retention percentage σ. The latter quantity deter-

mines how far the piston can be pulled out of its cylinder, and the former determines
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Figure 3.2: Schematic detailing the relevant lengths for determining the maximum
stroke of either the power or displacer piston. Configuration (a) shows the position
of the piston and connecting rod at the extreme bottom of the stroke (just before
the piston would “bottom out” on the end of the cylinder), whereas configuration (b)
shows the piston and rod positions at the extreme top of the stroke. Note in (b) how
part of the piston remains within the cylinder even at max extension; the length of
piston remaining within the cylinder is equal to (1− σ) `pis, where σ is the retention
percentage.
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how far it can be pushed in, so together they determine the piston’s maximum travel.

This, naturally, is also the maximum permissible stroke. In practice, then, deter-

mining the maximum allowed stroke involved first measuring `cyl then deciding on

a value for σ. This decision involved guesswork, the question under consideration

being: how far can the piston extend from its cylinder before it seems like the piston

will experience excessive side-loads when being pushed back in? With σ and `cyl

established, simple calculation gives the maximum stroke, and dividing this number

by two gives the maximum value for r. From Eq. (3.3), the required `rod can then

be calculated with ease. Furthermore, it follows from Eq. (3.3) that this `rod is also

the maximum length necessary to accommodate all strokes less than or equal to the

maximum stroke. This fact, which may be intuitive, is convenient as it means that

only one connecting rod (per piston) is necessary so long as it accommodates the

maximum stroke of the piston.

Now, the whole aim behind making new flywheels was to enable manipulation of

the stroke of either piston so that the swept volume ratio κ of the engine could be

varied, and its effects on power output measured. Given that new flywheels needed to

be made, the goal became to make these flywheels in such a way as to maximize the

amount by which κ could be varied. At the very least, the new flywheels should allow

κ to be varied from some value less than one to some value greater. This way it would

be possible to test the performance of the engine with the displacer sweeping out more

volume than the power piston, as well as with the power piston sweeping out more

volume than the displacer. The limits imposed on r by `cyl and σ constrained r to a

range insufficient for producing the desired κ range from variation of the stroke of one

piston alone, so variable strokes for both pistons was absolutely necessary. To that

effect, two flywheels were made, one for each piston, each with multiple connecting rod

mounting holes positioned at different radial distances from the center of the flywheel,

and hence corresponding to different, discreet stroke settings. After deciding which

stroke range was possible for the power piston, its flywheel was designed to have six

mounting holes, giving the piston a range of strokes from 9 mm to 19.15 mm, in

increments of 2.03 mm. Because of the original design of the displacer piston and

its cylinder, the stock displacer stroke is the maximum permissible without extensive

modification to the main engine body. Hence the displacer flywheel was designed with

only four connecting rod mounting holes, corresponding to displacer piston strokes

ranging from 9 mm to 15.49 mm in increments of 2.17 mm. As the stroke of each

piston is independently adjustable, these distinct stroke settings give a respectable 24

different values for κ, ranging from 0.36 to 1.34, thereby satisfying our desire to test
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values of κ both less than and greater than one.

In an effort to smooth out the rotational motion of the original engine, the glorious

new flywheels were made to be more massive than the originals, enabling them to store

more angular momentum and therefore to better dampen slight irregularities in the

angular velocity of the crankshaft. (Slightly jerky crankshaft rotation at low engine

speeds was the largest concern.) A heavier flywheel has a larger moment of inertia I

than a lighter one, so that for a given engine speed ~ω, its angular momentum ~L is also

larger, in accordance with the relation ~L = I~ω [12]. Hence, it takes a larger amount

of force on the new flywheel (from the piston and connecting rod) to alter its angular

velocity ~ω than it does for the originals. While the stock flywheels were made from

steel, in an effort to increase their moment of inertia, the new flywheels were turned

on a lathe from solid brass bar stock, a more dense material than steel that aside from

providing the requisite heft, looks absolutely stunning when machined. They were

machined thicker and of a larger diameter than the originals to further increase their

mass and moment of inertia over the stock flywheels, and were transfered from the

lathe to the milling machine for drilling and tapping of the pinch bolt and connecting

rod mounting holes.

In contrast to the design goal for the flywheels, the aim for the new connecting

rods was to make them as lightweight as possible. They, too, have a mass-dependent

moment of inertia Irod that we want to minimize as it will only absorb mechanical

energy from the engine (energy that could otherwise do work on the crankshaft)

without any benefit such as smoothing out engine rotation. While its motion is quite

complicated, the center of mass of each connecting rod does have some time-dependent

angular velocity ω(t) that is not constant. This is a consequence of the fact that the

center of mass of the connecting rod does not trace out a circle, and hence the point

about which the angular velocity is measured is constantly changing. This means

that there is some nonzero angular acceleration associated with each connecting rod.

By the rotational analogue of Newton’s second law, τ = Iα, where τ is a torque, I is

the moment of inertia of the body in question, and α is its angular acceleration, this

nonzero angular acceleration requires a torque, and hence a force, and hence energy,

which must be provided by the engine [22].

To reduce the moment of inertia of the rods, thereby boosting efficiency by min-

imizing the amount of energy wasted on their constant acceleration, the new rods

were made from aluminum sheet metal, giving them a lower mass than the original

brass items. The displacer connecting rod was kept the same length as the original

because engine parameters precluded elongation of the displacer stroke from its stock
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Figure 3.3: Diagram showing the front and side views of the power piston flywheel
(the displacer piston flywheel, not shown, is identical, but with four connecting rod
mounting holes instead of six). The mounting holes are positioned such that those of
similar radial distance from the center are positioned opposite of each other to improve
flywheel balance. Looking at the side view, one can see how the connecting rod is
fixed to the flywheel. A hole (not visible) drilled through one end of the connecting
rod fits over the bushing and rests against its flange, then a screw is inserted through
the bushing and is screwed into the flywheel, holding the bushing in place but allowing
the connecting rod to rotate freely.
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setting, but the power piston connecting rod was made slightly shorter to compen-

sate for the longer-than-stock strokes of the new power piston flywheel. Using a large

shears, the rods were rough-cut from aluminum sheet as rectangles whose edges were

rounded and scalloped out into a dog-bone shape using an oscillating spindle sander

to increase elegance and further reduce weight. They were then given a honed finish

by being manually wet-sanded on all sides for that added sultry gleam and for the

more practical purpose of eliminating any remaining rough edges (burrs) that could

catch on pivot components and impair proper and consistent engine function. Fig.

3.4 provides a diagram of the power piston connecting rod, showing by means of a

dotted boundary the size of the rough cut before sanding and honing.

3.1.2 Upgrading the Heat Source

As shown in Fig. 3.1, the heat source for the original engine was a simple alcohol

flame. On one end, the green baseplate incorporated a small reservoir capable of

holding enough rubbing alcohol (or Everclear, or kerosene, or gasoline—the Stirling

isn’t picky) for 7-10 minutes of engine operation. A cloth wick, with one end anchored

in the metallic fuel reservoir cap visible in Fig. 3.1 and the other submerged in the

fuel, sustained the flame and centered it beneath the very end of the hot space at

the edge of the displacer cylinder. Though this type of heat source made the engine

both highly portable and completely self-contained, thereby legitimizing its existence

as a functional, table-top showpiece, it was woefully inconsistent and impossible to

control. The flame would flutter incessantly, sporadically die, and hence could not

come close to maintaining the hot space at a constant temperature. So instead of

forevermore fiddling with a fiercely fickle flickering flame, the original alcohol burner

was substituted for an electric heating element made from nichrome wire looped

around the hot side of the displacer cylinder.

Nichrome is an alloy of typically 80% nickel and 20% chromium that is notable

for its very high electrical resistance R. It is highly temperature resistant, with a

melting point of ∼1400 ◦C, and is readily available as a wire in a variety of thickness

gauges. Due to this high resistance, if a current I is passed through a length of

nichrome wire, the wire will radiate an impressive amount of heat Qrad. This is due

to collisions between moving electrons (which produce the current I) and the atoms of

the wire, collisions which transfer some of the kinetic energy of the electrons onto the

atoms, exciting them and causing the wire to heat up [12]. Hence, the nichrome wire

(or any resistive conductor) will convert electrical energy to thermal energy, and will
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Figure 3.4: Diagram detailing the power piston connecting rod. The top hole fits
around the bushing through which the flywheel mounting screw is inserted. The
bottom hole fits around the power piston pivot pin forming a simple, low-friction
joint. The dotted rectangle shows the size of the connecting rod after an initial rough
cut from aluminum sheet; after the holes were drilled, the edges were rounded into
the final dog-bone shape using an oscillating spindle sander.
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do so at a rate equal to that of electrical energy production and delivery within the

circuit. But this rate is simply the electrical power P available, which is given by the

relation P = IV = I2R, where V is the voltage drop across the resistive material, R

is its resistance, and Ohm’s law, V = IR, has been used to eliminate dependence on

V [20]. The total radiated heat, then, is proportional to the electric power available,

giving

Qrad ∝ I2R,

with the rate of heat radiation—but not the total amount of heat radiated—equal

to I2R. (In fact, and perhaps intuitively, the total amount of heat radiated is also a

function of time, or how long the energy transformation, from electrical to thermal, is

allowed to occur at the rate specified by the power available P .) The large resistance

of nichrome wire thus indicates that a substantial amount of heat will be radiated

for a given current being passed through the wire. This property makes nichrome an

ideal material for use as an electrical heater, and indeed it is commonly found as the

heating element in the common toaster or in electronic cigarette lighters.

Using nichrome wire as the heat source for the engine was appealing as the

nichrome won’t flicker, and won’t grow more intense, fade, or die completely so long

as a constant current I, provided by a power source, is made to pass through the wire.

What is more, nichrome wire can be molded into the desired shape beforehand, then

anchored into a fixed position, thereby directly heating only a controlled area of the

engine. (The fact that heat conduction occurs between different engine components

means that, despite the fact that the nichrome only directly heats a small portion

of the engine, other components will necessarily heat up as well.) The name of the

game here is the consistent application of a steady amount of heat, and the properties

and nature of nichrome wire made it a clear choice over an alcohol flame. Hence, the

original heat source was scrapped and the new one made by wrapping a length of

nichrome wire around the hot end of the displacer cylinder, then carefully spreading

the loops of wire to ensure they would not contact each other and short-circuit. To

ensure the nichrome wouldn’t also short out on the conductive steel displacer cylin-

der, a length of woven fiberglass cloth (both highly heat-resistant and non-electrically

conductive) was sandwiched between the nichrome coils and the cylinder. The heat-

ing element was held in place around the displacer cylinder by means of a ceramic

clamp bolted to the baseplate. The fact that the clamp was made from ceramic is

crucial: the clamp material had to be an excellent insulator so that it wouldn’t short

out the heating element, thereby preventing current from passing through and heat-
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ing it, and it had to be capable of withstanding the high temperatures (∼ 500 ◦C) of

red-hot nichrome. The ceramic clamp worked perfectly, holding the heating element

secure so that leads running to a 12V/10A power supply could be attached to and

removed from the nichrome wire without altering the position of the coils relative to

the displacer cylinder.

Configured as such, the nichrome heating element offered a simple and effective

alternative to the temperamental alcohol heat source, allowing precise moderation

of temperature (by way of increasing or decreasing the current passing through the

wire), and, more than anything, ensuring consistent application of heat. It is not

within the scope of this thesis to be able to accurately control how much heat is

being applied, as that would only be important if we were concerned with measuring

the efficiency of the engine. It is, however, imperative to have a consistent heat source

so that, regardless of the precise amount of heat radiated, the temperature of the hot

space TH can be kept constant. Upgrading the heat source marked the final upgrade

to the engine itself, which can be seen in its final, ready-for-testing form in Fig. 3.5.

3.2 Power Measurement

Since the ultimate goal of this work is to measure the power output of a Stirling

engine and compare the results to those predicted by the theoretical model outlined

in Section 2.3, all of the modifications described above are useless without some way

of actually measuring the power the engine can produce. The measurement of this

key quantity is in practice more difficult than Eq. (2.3), P = τω (constant τ), may

seem to suggest. According to this equation, all we need to do is measure the torque

produced by the engine and multiply that by the engine speed ω, measured in Hertz,

at which that torque measurement was taken. But while the engine speed is a simple

quantity to measure, torque is not so cooperative, especially considering how little

torque and power the miniature engine used here is capable of producing. Making

torque and power measurements on a more substantial engine would be a relatively

simple process as devices do exist today that are designed specifically for that purpose.

The torque and horsepower ratings for motorcycle and automobile engines are today

all made using a dynamometer, or dyno for short. These devices work by applying a

known load to the engine, usually by way of hydraulics or magnetic fields, which is

equivalent to applying a torque to the engine that it will try to combat. By measuring

the changes in engine speed as increasing load (torque) is applied, output power can

be computed. Since no production dyno could be found that was sensitive enough
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to measure the very low power output of the engine used here, a very simple form of

dynamometer called a de Prony brake was made instead that uses frictive forces to

create a controlled load.

3.2.1 The de Prony Brake and its Design

Proposed in 1822 by the French military engineer Baron Riche de Prony, the de Prony

brake, or simply Prony brake, is a very rudimentary dynamometer that clamps onto

the output shaft of an engine and uses friction between the shaft and brake to exert

a load on the engine [23]. As shown in Fig. 3.6, the brake consists of two opposing

plates, one long arm and a similar but shorter piece, that are shaped to fit snugly

around the crankshaft when joined by two screws. The screws pass loosely through

the top arm and screw into threads tapped into the lower plate so that as the screws

are tightened, the two plates are pulled together, pinching down on the crankshaft.

When in operation, the opposite end of the long arm, the end featuring a pointed

metal tip, is made to rest on the pan of a scale so that the arm remains horizontal

during testing.

When the engine is running with the Prony brake partially engaged, friction be-

tween the brake plates and the crankshaft will exert a torque on the brake arm,

forcing its metal tip into the scale. In response, the scale will ‘push back’ with the

same amount of force, an amount that can be determined easily from the mass reading

on the scale (the force exerted and scale reading differ by a factor of g since the brake

exerts a force F = ma = mg with respect to the scale and its calibration). Since the

scale exerts a force back on the brake which is free to pivot around the crankshaft,

the scale must in fact exert a torque on the brake with a lever arm equivalent to that

marked in Fig. 3.6. Since the arm remains stationary, it must be the case that the

torque exerted by the scale on the brake is equivalent to the torque exerted by the

engine on the brake at that engine speed. Since the two torques are equivalent, the

reading on the scale must also correspond to the torque exerted by the engine, where

in fact

τengine = mg`, (3.4)

with m the mass recorded by the scale (in kilograms) and ` the length (in meters)

of the brake lever arm. Increasing the brake clamping force serves to increase the

friction forces between the brake and crankshaft, slowing the engine but driving the

point of the brake into the scale with more force, corresponding to a larger torque.
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The Prony brake was machined from Delrin (polyoxymethylene), a stiff, low-

friction plastic, so that frictive forces wouldn’t immediately overwhelm the engine

and so that the brake wouldn’t scratch and damage the crankshaft as it would were

it made from metal. Wood was also considered as a material for similar reasons,

but the idea was rejected as it is a difficult material to machine precisely. After

all, precision was required as the lever arm length needed to be known exactly (to

facilitate correct calculations of torque from a mass reading on a scale), and the

shaped surfaces conforming to the crankshaft needed to be cut very smoothly to

reduce vibration along the brake arm when the brake is engaged.

With the engine as low-powered as it is, it isn’t sufficient just to have the brake

made out of a low-friction material, however. Also necessary was that the mechanism

for tightening the brake be capable of increasing the brake force extremely gradually.

The power output of low-power engines is generally difficult to measure because even

a small increase in brake force has a pronounced effect on engine speed [24]. Increas-

ing the sensitivity, or fine adjustment capabilities, of the Prony brakes tightening

mechanism helps facilitate accurate torque measurement by allowing for more, and

for more closely spaced, data points to be collected.

To make the brake force as minutely controllable as possible, the brake force

adjustment screw was chosen to have a high thread count per inch, and as seen in

Fig. 3.6, was made to act on the upper arm through a spring. The high thread count

means that for each revolution of the screw, it will only sink into its hole by a small

amount equal to the distance between threads. That is, in the case of the 40 threads

per inch (tpi) adjustment screw used in the brake, one complete revolution will sink

the screw by 1/40 of an inch. The spring was used to negate the sharp increase in

brake force that would result from any tightening of the adjustment screw beyond

the point where the head of the screw has first contacted the upper arm (the point

where the brake first engages). Due to the rigidity and incompressibility of Delrin,

tightening sensitivity beyond this point would be wholly dictated by the thread count

of the adjustment screw. With the spring, however, while there is a point where the

brake first engages, tightening the adjustment screw beyond that point just serves to

compress the spring. The spring in turn exerts a force on the upper arm given by

Hooke’s Law, Fspring = −kx, where k is the relevant spring constant and x corresponds

to how much the spring has been compressed (or stretched) from its equilibrium length

[12]. Tightening the adjustment screw increases x, and therefore the force applied by

the spring, but that force is metered by k; the smaller the value of k, the smaller the

increase in brake force for a given turn of the adjustment screw. The overall effect of
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incorporating a spring into the adjustment screw, then, is that the brake behaves as

though the thread pitch on the adjustment screw were fantastically and unrealistically

high. It was thought, too, that the spring may have the additional benefit of absorbing

potential vibrations that could cause jumpy readings on the scale, but this has not

been confirmed.

3.2.2 Measuring Engine Speed ω

With the Prony brake we can measure the torque the engine produces, but to deter-

mine its output power, we also need to know how fast the engine is running when a

given torque measurement is taken. That is, we need a device that can measure how

quickly the engine performs one cycle. But as the engine used in this study is decid-

edly lacking in power, this device cannot be required to contact the engine in order to

take a measurement as this would necessarily absorb power, likely of a non-negligible

amount. The solution was to use an optical tachometer, a device that capitalizes on

nothing but reflecting light and clever circuitry to take its measurements. It works by

shining laser light at an opaque surface and using some form of photodetector, often

a phototransistor, to detect if any light reflects back. By painting over the gleaming

sheen of the outer rim of one of the flywheels to make the rim opaque, but sticking a

single small patch of reflective tape somewhere on the painted rim, we have a flywheel

that will reflect light back into the photodetector of the tachometer precisely once

per rotation provided the tachometer remains stationary with respect to the flywheel.

With only one reflective point per revolution (or per cycle), if we shine the tachome-

ter at the rotating flywheel, all it has to do is count the elapsed time (in seconds)

between successive photodetections, and divide by that time to give the engine speed

in revolutions per second.

Originally, an optical tachometer circuit was built with an LED as a light source

and a phototransistor as a detector, but when it was realized that a ready-made

optical tachometer could be sourced cheaply online, the original circuit was scrapped.

A black Sharpie was used to cover the shiny finish of one of the machined flywheels,

and the reflective tape included with the tachometer was applied, ultimately with

good effect, to the opaque rim following the recommendations of the instruction

manual.
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Figure 3.5: Here we see an image of the engine in its final, fully modified form. Visible
in the image are the upgraded brass flywheels, the new aluminum connecting rods,
the aluminum base, nichrome heating coil, and ceramic heater clamp. The rest of the
engine was kept stock.
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Figure 3.6: A side-view diagram of they type of Prony brake considered in this study.
The two screws pass loosely through the long, upper plate and screw into the bottom
plate to create pressure around the crankshaft. While the screw on the left is set to a
certain height and left alone, the longer screw on the right is turned throughout testing
to gradually increase the brake) on the crankshaft. The spring wrapped around this
longer screw helps enable the brake force to be increased in the smallest possible
increments; if it weren’t there, the screw would tighten down onto the upper plate
too quickly for brake force to be applied gradually. The metal tip provides a precise
point of contact between the brake arm and the scale so that the lever arm can be
measured accurately.





Chapter 4

Experimental Methods

In the last chapter we assembled a testable engine, built a device with which we can

measure torque and power, and with this we are armed to see how the remaining

collection of components can converge as a functional engine test rig. Recall that

the aim is to measure the power output of the engine across a range of swept vol-

ume ratios κ, and phase angles α, and compare the results to the predictions of the

Schmidt model. By virtue of the fact that the engine speed ω is easily variable with

the Prony brake, the relationship between engine speed and brake power will also

be investigated. Testing the model’s ability to accurately predict the relationships

between engine power and κ, engine power and α, and engine power and ω will re-

quire numerous data runs with many data points per run. In fact, a total of 24 swept

volume ratios, with one data run per ratio, are possible with the flywheels configured

as they are, and a continuous range of phase angles are possible from 0 to 180◦. This

translates into a large number of data points across which some measure of general

consistency must be maintained, but a glance at the model reveals just what needs

to be kept consistent. With reference to Eq. (2.12), we see that given set of engine

dimensions (like the radius of the power piston) that collectively determine VT , p̄, τ ,

α, κ, Y , and X, if we supply the model with the appropriate temperatures TC and

TH and the engine speed ω, it will provide us with a single indicated power output.

As we have designed it so far, we will be able to determine the brake power output

of the engine at a given engine speed if we can measure that engine speed and the

corresponding torque value. Doing so will provide a means to calculate a single brake

power output for that engine speed that can be compared against the theoretical

indicated power. Testing each of the aforementioned three power relationships hence

requires that we be able to maintain constant TC and TH throughout each trial to

control the variable τ while determining the effects of ω on power output. To test
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the ability of the model to predict the first two relationships, those between power

and κ and power and α, however, we must further ensure that TC and TH are kept

constant between trials.

4.1 Ensuring Temperature Consistency

Redesigning the heat source and converting it from a protean alcohol flame to an

electrically powered heating element was the first step to introducing a measure of

consistency in engine temperatures both during a single trial run and between mul-

tiple. The nichrome heater uses a power supply to produce the current required

for heating, and with this power supply it is a simple matter to keep this current

constant; after all, the power supply used was designed to produce a constant cur-

rent. Supplied as such with a constant current, the nichrome heater will maintain a

constant temperature, and TH will hence remain constant, as desired, throughout a

trial run. Provided the power supply is set to deliver the same amperage per trial,

the heater will reach the same temperature per trial, keeping TH consistent between

trials as well. And So long as no significant ambient air currents are present around

the heating element and so long as the nichrome isn’t in contact with any thermally

conductive material (which would cause heat convection and heat conduction, respec-

tively, away from the heater), TH will remain as constant during and between each

trial as can reasonably be expected. As the tests took place in a ventilated room,

some minimal air currents were inevitably present, and it was hoped they would be

either negligible or else steady enough to still permit a constant TH , even between

trials.

Upgrading to a nichrome heater allows consistency in TH , but can’t be relied on

for also maintaining a constant TC . Due to heat conduction within the engine itself,

heat from the nichrome and hot side of the engine will eventually distribute itself

across the other various components of the engine, including the cold space. To get

the most power and, as Eq. (1.4) shows, the highest efficiency, out of the engine, we

want to keep TC as low as realistically possible relative to TH ; that is, we want to keep

the temperature ratio τ = TC/TH as low as possible. We of course also want to keep

it as constant as possible, and to that effect will incorporate a cooling fan into the

test rig. A small, 12 V box fan was chosen for this application due to its satisfactory

airflow and because box fans in general are inherently free-standing and protected.

Aiming the fan directly at the cooling fins surrounding the cold space of the engine

(see Fig. 3.1) will maximize the effectiveness of the fan, but in this configuration we
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also run the risk of sending unwanted air currents to the heating element, impairing

its ability to maintain a constant temperature. To combat this, we set up a simple,

metal wind barrier between the hot and cold sides of the engine to contain airflow to

the cold side.

4.2 Final Assembly

With consistent engine temperatures ensured by the upgraded heat source and air-

cooling system, we are at last ready to complete our experimental set up. The mod-

ified engine was mounted to a new, solid aluminum baseplate into which a hole was

drilled to accept the ceramic heating element clamp. The new baseplate was also

made significantly larger than the original to make room for clamps anchoring the

engine to the experiment table. As one might expect, the rapid, reciprocating motion

of the displacer and power pistons produces a significant amount of lateral vibration,

sufficient to literally vibrate the engine off of the table, a catastrophic result precluded

by the use of clamps. Large C-clamps were used as they are both strong and sim-

ple to install and remove. With the engine in position, the windscreen was installed

between the hot and cold sides of the displacer cylinder, and ended up doing double

duty by also serving as a retaining bracket for the cooling fan. Next, the Prony brake

was assembled around the crankshaft, and a digital mass scale, bought online, was

moved into position under the metal tip of the brake arm. A thin piece of metal

was slipped between the metal tip and the scale to help protect the scale pan from

scratches caused by the sharp brake arm tip.

Proper positioning of the brake arm relative to the scale pan is imperative to an

accurate determination of engine torque. As is the norm among scales, the pan of the

scale used in this study is confined to move vertically and hence can only respond to

forces that act vertically downward. This means that in order to accurately translate

the reading on the scale into the torque to which it corresponds, we need to ensure

that all the force ~F exerted by the tip of the brake arm on the scale pan acts vertically

downward. That way, the force exerted by the scale on the brake arm ~Fscale will act

perpendicularly to the lever arm with a magnitude equivalent to that of ~F . Since

torque τ is the product of the length of the lever arm R and the perpendicular force

[Eq. (2.2)], to properly convert the reading on the scale into a torque we must

therefore require that

~F = −Fz ẑ, (4.1)
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Figure 4.1: This image shows all the key components of the experimental setup as
they were positioned during testing. The engine itself, the Prony brake, fan, scale,
optical tachometer, power supply and nichrome heater are all visible. Not visible,
however, are the C-clamps that generally anchor the engine baseplate to the table.
They were removed prior to the image being taken to make the other components
more apparent.
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where Fz is the component of ~F along the z-axis, and +ẑ is the usual basis vector

pointing vertically upwards from the scale pan as seen in Fig. 4.2. Since ~F acts

perpendicularly to R, satisfying Eq. (4.1) requires that the lever arm rest in the x–y

plane so that it is perpendicular to ẑ. That is, for the scale read-out to properly

correspond to engine torque, we need the brake arm to be parallel to the table when

fixed to the crankshaft at one end and resting on the scale at the other. In such

a configuration, we have |~F | = |~Fscale|, as desired, due to the fact that ~F is acting

entirely in a direction in which the scale can and will respond. Fig. 4.2 shows the

different forces acting between the scale pan and the tip of the brake arm, illustrating

the required equivalence of ~F and Fz ẑ. In configuration (a), where the brake is not

properly positioned, not all the force exerted on the scale by the brake is registered

by the scale because ~F 6= −Fz ẑ. This is due to a component of ~F , namely Fx, that

acts in the −x̂ direction and hence cannot be detected by the scale.

As it happened, the height of the pan of the scale used for testing demanded that

the engine baseplate be propped up slightly in order for the Prony brake to lie level as

needed. To that effect, two quarter-inch-thick metal spacer plates were sandwiched

between the engine baseplate and the experimental table, one at either end of the

baseplate, with the clamps applying pressure to the ends of the baseplate, over the

spacers. Elevating the engine relative to the scale pan so as to optimally orient the

Prony brake marks the final step in preparing the experimental apparatus, or engine

test rig. Fig. 4.1 shows an image taken of the test rig used in this study. The engine,

heat source, heat source power supply, cooling fan, wind barrier, Prony brake, and

scale are all visible and are positioned as they were during testing.

4.3 Conducting Trials and Obtaining Data

As generally expected, a number of preparatory steps preceded each trial run. Firstly,

either the phase angle α or the swept volume ratio κ had to be set, depending on

which of the two parameters was being measured in a particular trial. Adjusting the

swept volume ratio was a trivial matter of moving each connecting rod from one hole

on its respective flywheel to another. A protractor was used to set the phase angle,

with α = 90◦ for all swept volume ratio tests.

After fixing α and κ, the first step to taking measurements of the engine’s perfor-

mance was to give the engine adequate time to reach a stable operating temperature

and speed with the Prony brake only loosely attached (with the bottom plate hanging

on the screws, not contacting the crankshaft). As the Stirling derives its power from
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Figure 4.2: A diagram showing the forces acting between the metal tip of the Prony
brake arm and the scale pan. Configuration (a) shows how improper brake arm
orientation (that is, not horizontal with respect to the table) can lead to an improper
calculation of torque. With the arm at an angle, the force exerted by the scale on
the brake ~Fscale is not equal and opposite to the total amount of force ~F with which
the arm is pushing on on the scale because of the component of force acting in the
−x̂ direction, Fx. Due to the scale being constrained to movement solely along the
z-axis, Fx is a force not combatted and hence not registered by the scale. Inadequate
scale readings would would cause torque calculations to return values that are too
low. Configuration (b), in contrast, displays the brake arm in the necessary and

proper position. Here, ~F = −~Fscale , and the reading on the scale properly reflects the
perpendicular force required to produce a torque on the brake about the crankshaft
sufficient to oppose the torque on the brake from the crankshaft.
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a temperature differential across the engine body, it was imperative to let the engine

run untouched until a stable differential had been reached. Otherwise, the engine

would be literally more powerful by the end of the trial run than at the beginning.

At least five minutes were dedicated to allowing the engine temperatures to stabilize;

stability was confirmed by monitoring engine speed, with a constant engine speed

indicating a steady temperature differential. Engine speed, not engine temperature,

was chosen as an indicator of the engine having reached a stable state because engine

speed, not engine temperature, is directly involved in our calculation of power. The

optical tachometer also proved more consistent and controllable than the thermocou-

ple thermometer used to measure engine temperatures as the thermometer tended to

record different values for, say, the hot space, when contacting different parts of the

hot cylinder.1

After reaching a stable state, the engine was stopped briefly so that the scale,

with the brake resting on it, could be zeroed so its readings would not reflect the

force on the scale from the weight of the brake arm itself. Once restarted from this

pause, the engine was again given time to reach a steady state. As the engine was

warm when momentarily stopped, and as the heat source was left on while the scale

was zeroed, this second waiting period only lasted thirty seconds or so. At this point,

data taking could begin. The first data point was taken with the brake still only

loosely attached, and even still the friction between the brake arm and the crankshaft

produced a torque sufficient to register on the scale. The reading on the scale and

the engine speed at which the reading was taken were both recorded.

Tightening both screws at the same rate, the lower plate of the brake was gradually

brought into contact with the crankshaft with care being taken to ensure that, once

fully contacting the crankshaft, the lower plate was parallel to the upper plate. This

helped ensure that the brake, when tightened further, exerted its brake force on the

crankshaft as evenly as possible in hopes of preventing any compromising vibrations

between the crankshaft and the brake [24]. Any increase in brake force from this point

on was accomplished using the adjustment screw alone (see Fig. 3.6). Each time brake

force was increased, the engine was given time to respond and stabilize at a new, lower

speed, at which point the engine speed and scale reading were both recorded. This

1A thermocouple is a device made of two dissimilar metal wires connected directly together at
one end (the measuring end) and connected at the other through a circuit. The non-measuring
junction point is kept at a reference temperature so that a temperature difference between the two
ends is measured. Heating the measuring end produces electromotive forces of different magnitudes
in the two wires causing electrons to jump from one wire to the other across the junction point,
thereby creating a temperature-dependent voltage drop across the junction. This voltage can then
be accurately correlated back to its corresponding temperature.
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at times hypnotic process of increasing brake force, waiting for stability, then making

and recording measurements was continued until the engine speed was decreased

to the point where any subsequent increase in brake force would, despite even the

most sensitive touch at the adjustment screw, slow the engine to a stall. As engine

performance did in fact change with variation in κ and α, the engine speed at which

the test was concluded differed from trial to trial, but this does not significantly affect

our results. The temperatures TC and TH , as well as the ambient temperature Tamb

were recorded at regular intervals during each trial.

To help maintain proper engine function throughout the entire testing period, the

engine was disassembled, cleaned, re-lubricated, and reassembled after every three

trial runs, or after every 3-4 hours of engine operation. Though Stirling engines tend to

run very clean because at no point does engine lubricating oil contact or combine with

combustion bi-products (namely particulate matter, or soot), cleaning was performed

with high regularity as a precaution against premature wear of engine components.

To keep the engine running smoothly throughout each test, the crankshaft pivots,

connecting rod pivots, power piston, and displacer piston rod were lubricated with a

lightweight, multipurpose oil at regular intervals during the trial. Periodic lubrication

was especially important during trials involving a long piston stroke as side-loading on

the pistons is highest for longer strokes, and the consequences of side-loading, namely

excessive wear between the piston and the cylinder, or else the piston binding up

completely within the cylinder (a catastrophic failure), are most effectively precluded

by the presence of a healthy film of oil between the piston (or piston rod) and its

cylinder.



Chapter 5

Presentation and Analysis of Data

As suggested in the previous chapter, the data at the end of each trial presented

itself as a list of paired numbers: a mass (in grams) and the engine speed (in RPM)

at which the mass measurement was taken. This data was not immediately useful

to our cause of testing the applicability or accuracy of the Senft model, however, as

it makes no direct mention of cyclic work or engine power. As is so often the case,

the quantities we measure are not the quantities we seek, and we must arrive at the

latter through calculations performed on the former. While relatively simple, these

calculations are tedious in our case and hence a Mathematica code was developed to

perform them quickly and easily. The code began with a list of raw data points of the

form {RPMs, mass} from which it would generate plots of engine torque and power

versus engine speed. The section of code that produces these plots is reproduced in

Appendix B, Fig. A.2. To facilitate judgement of the effectiveness of the Senft model

in predicting the relationship between power output and engine speed ω, additional

code was written to plot both measured power output (versus RPM) and theoretically

predicted power output on the same axes so that differences, or similarities, between

the two curves could be readily identified. To accomplish this, the program would run

the Senft model under the same conditions of the particular trial run being analyzed;

that is, it would calculate Wcyc from Eq. (2.12) across a range of engine speeds ω

with the swept volume ratio κ, the temperature ratio τ , the dead volume ratio χ,

and the phase angle α all equal to the values they took during the trial. The code

would generate a list of data of the form {RPM, predicted power output} which

could then be plotted with ease. The code used for this operation is reproduced, with

explanatory comments, in Appendix B, Fig. A.1.
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5.1 The Data, Plotted

With the code written thus, analyzing the data from each trial run was a simple

matter of entering temperature and phase angle values as well as the stroke settings

(n1 and n2 in the code of Fig. A.1) into the Mathematica programs and pressing enter.

The true labor was found in the data collection process, which turned out to be very

time consuming with each trial taking on the order of one hour to complete. The

time required to service the engine every three trials added up quickly as well, with

the effect that not as many trials were performed as initially intended. As designed,

the upgraded engine flywheels, offering four displacer piston stroke settings and six

power piston settings, enabled testing of 24 distinct swept volume ratios as well as an

infinite range of phase angles. However, due to the ineluctable presence of deadlines

and time constraints, only ten swept volume ratios and six phase angles were tested.

That said, the swept volume ratios tested still ranged from 0.48 to 1.0, giving a more

or less satisfactory spectrum broad enough for the relationship between κ and power

output to be clearly visible. Similarly, though the number of phase angles tested was

relatively small, their range, from 45◦ to 120◦ in increments of 15◦, allowed testing

values of α both less than and greater than 90◦, and, crucially, was sufficient for

clearly exposing the relationship between α and power output.

The processed data is displayed in Figs. 5.1 through 5.8. In Figs. 5.1, 5.2, 5.5

and 5.6, the torque and power curves are color-coded with power displayed in red

and torque in blue. As the dimensions of power are not the same as those for torque

([Power] = N ·m · s−1 6= N ·m = [Torque]), two scale axes are required for each plot,

with the power curve scaled to the left vertical axis and the torque curve to the right.

Similarly, Figs. 5.3, 5.4, 5.7 and 5.8 also display two curves per plot, but this time

both correspond to power and hence a single scale axis could be used. However, due

to the sheer difference in range between the measured power curve (displayed again

in red) and the theoretical, indicated power curve (in orange), two scale axes were

chosen with the measured power scaled to the left axis, the indicated power to the

right. Despite the slightly confusing nature of having two scale axes for a single plot, if

both curves had been scaled to the same axis, either the indicated power curve would

be appropriately displayed with the measured power curve inconveniently reduced to

an indistinguishable set of points along the RPM axis, or the measured power curve

would be displayed with the indicated power curve not even visible on the plot.
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Figure 5.1: Shown above are the torque and power versus RPM plots for the first
four swept volume ratios tested. The power curves are shown in red and scale to the
left vertical axis while the torque curves, in blue, scale to the right. Each trial was
conducted with the phase angle α = π/2, and the swept volume ratio κ for each trial
is shown on its respective plot. Worth noting is the difference in maximum power
output between plot (b) and plot (c). While the swept volume ratios for those two
trials differs by less than 1%, and the temperature ratio τ by 7%, the maximum power
output in plot (b) is nearly twice that of plot (c). This impressive difference cannot be
accounted for by the Senft model, which would predict roughly equal power outputs
for the two trials given the slightly dissimilar κ and τ between the two.
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Figure 5.2: Shown above are the torque and power versus RPM plots for the last four
of eight swept volume ratios tested. The power curves are shown in red and scale to
the left vertical axis while the torque curves, in blue, scale to the right. For all trials,
α = π/2, and the swept volume ratio for a given trial is shown on its respective plot.
The sharp kink at roughly 440 RPM in the power curve of plot (b), and the kink at
525 RPM in the power curve of plot (d) are more likely due to experimental error
than to any curious power delivery characteristics of the engine.
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Figure 5.3: Shown above are plots comparing measured output power (brake power)
to the indicated output power predicted by the Senft model for the first four swept
volume ratios tested. The measured (brake) power curves are shown in red and scale
to the left vertical axis while the theoretical (indicated) power curves, in orange,
scale to the right. For each trial, α = π/2. Note that for each trial, for a given
RPM the indicated power output is orders of magnitude greater than the measured
power output. Further note that while the Senft model predicts that output power
will increase continually and linearly with RPM at a rate determined by Wcyc (since
Pindicated = Wcycω), the measured power output falls off after a certain maximal value.
Lastly, though the slopes of the measured power curves appear to agree with the slopes
of the indicated power curves until near the point of maximal power output (which
would suggest, falsely, that Wcyc is the same experimentally as theoretically), this is
merely a coincidental consequence of having two different scale axes on the same plot.
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Figure 5.4: Shown above are plots comparing measured output power (brake power)
to the indicated output power predicted by the Senft model for the final four of the
eight swept volume ratios tested. The measured (brake) power curves are shown in
red and scale to the left vertical axis while the theoretical (indicated) power curves,
in orange, scale to the right. For each trial, α = π/2. Note that for each trial,
for a given RPM the indicated power output is orders of magnitude greater than
the measured power output. Further note that while the Senft model predicts that
output power will increase continually and linearly with RPM at a rate determined
by Wcyc, measured power falls off after it reaches a certain maximal value.
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Figure 5.5: Torque and power versus RPM plots for the first four phase angles tested.
The power curves are shown in red and scale to the left vertical axis while the torque
curves, in blue, scale to the right. Each trial was conducted with the swept volume
ratio κ = 0.57; the phase angle α for each trial is shown on its respective plot.
Generally, output power appears to increase with increasing α.



74 Chapter 5. Presentation and Analysis of Data

!"#

!"#$%

&'()*

+'*,-)

!"#.$

!$#

Figure 5.6: Torque and power versus RPM plots for the final two phase angles tested.
The power curves are shown in red and scale to the left vertical axis while the torque
curves, in blue, scale to the right. Each trial was conducted with the swept volume
ratio κ = 0.57; the phase angle α for each trial is shown on its respective plot. The
‘trend’ in these final two plots is for power output to decrease as α is increase past
≈ 105◦.
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Figure 5.7: Shown above are plots comparing measured output power (brake power)
to the indicated output power predicted by the Senft model for the first four of six
phase angles tested. The measured (brake) power curves are shown in red and scale to
the left vertical axis while the theoretical (indicated) power curves, in orange, scale
to the right. For each trial, κ = 0.57. Note that for each trial, for a given RPM
the indicated power output is orders of magnitude greater than the measured power
output. Further note that while the Senft model predicts that output power will
increase continually and linearly with RPM at a rate determined by Wcyc, measured
power falls off after it reaches a certain maximal value.
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Figure 5.8: Shown above are plots comparing measured output power (brake power)
to the indicated output power predicted by the Senft model for the final two of six
phase angles tested. The measured (brake) power curves are shown in red and scale to
the left vertical axis while the theoretical (indicated) power curves, in orange, scale
to the right. For each trial, κ = 0.57. Note that for each trial, for a given RPM
the indicated power output is orders of magnitude greater than the measured power
output. Further note that while the Senft model predicts that output power will
increase continually and linearly with RPM at a rate determined by Wcyc, measured
power falls off after it reaches a certain maximal value.
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5.2 Analysis

What should be immediately apparent from the figures in the previous section is that

the data obtained does not obviously agree with theory. The task at hand, then,

is to determine whether this absence of evident agreement is the result of a poor

experimental design or poor execution of the design, or if it is the consequence of a

flawed model. Even making simple, qualitative observations of the data presented in

Figs. 5.1–5.8 can prove quite telling here, and is as good a place to start as any.

5.2.1 Brake Power vs. Indicated Power

Despite the jaggedness of some of the measured power curves in Figs. 5.1–5.8, for

all of them there exists an RPM or a range of RPMs (meaning an ω or range of ω)

at which the engine is maximally powerful. Even plot (a) in Fig. 5.5, the trial most

dubiously in agreement with this statement, shows the beginnings of a downward

trend away from a point of maximum power as RPMs decrease from approximately

310. Moreover, increasing engine speed beyond the optimal RPM in all trials tends

to result in a reduction in power commensurate with the simultaneous reduction in

torque with increasing RPMs. The Senft model, however, cannot account for this

trend between power and ω. As seen in Figs. 5.3–5.4 and 5.7–5.8, the power output

predicted by the model increases linearly, and indefinitely, with RPM. This disparity

arises out of the difference in where on the engine the model assumes the power

measurement is being taken, and where on the engine power was actually measured

in this study. Torque measurements, from which power was calculated, were made

using the Prony brake which was connected to the engine at the crankshaft. Hence

the output power derived from the torque measurements taken at the crankshaft can

only reflect the power output available at the crankshaft. What we have to this point

been calling the brake power is occasionally referred to as the shaft power purely

because it is measured at the final output shaft of the engine.

The model, however, assumes a very different point of measurement. As the

derivation of the model presented in Section 2.3 shows, the model ignores the mecha-

nisms that are responsible for, and that capitalize on, the changes in pressure within

the engine space. Recall from Section 2.3.1 that the model takes as an assumption

the sinusoidal motion of the pistons on which the volume and pressure of the working

fluid depend without any consideration of how this motion is achieved. Eq. (2.6),

V (t) = VD

(
1 +

κ

2
(1 + cosωt) + χ

)
,
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which gives the total instantaneous engine volume, certainly makes no mention of

the connecting rods, flywheels, and pivots that make possible the time-dependent,

sinusoidal piston motion evident in the (cosωt) term. Instead of predicting the power

output at the crankshaft, which doesn’t exist as far as the model is concerned, the

model predicts the power available at the junction between the working fluid and

the piston, the latter of which it treats as nothing more than a moveable wall of

its container, the engine body. Measuring power at this junction gives the indicated

power for an engine, and entails recording the pressure and volume variations within

the engine cylinders, and using that data to create a p–V diagram for the real engine

cycle. The indicated work per cycle can then be determined easily as it is equal to

the area of the closed loop in the diagram that marks the path taken by the working

fluid. This is a consequence of the relation W =
∫
p dV [Eq. (1.3)], as well as where

during the cycle work is actually performed. With reference to the p–V diagram for

the ideal Stirling cycle, Fig. 1.3, the working fluid does some amount of work on the

piston as it follows the isotherm from (c) to (d), and has an amount of work done on

it as it is compressed along the isotherm from (a) to (b). The cyclic indicated work is

the net difference between these two amounts, which by the above integral relation,

is equivalent to the area beneath the upper isotherm (total work performed by the

fluid) minus the area beneath the lower isotherm (total work performed on the fluid),

or simply the area enclosed by the loop in the diagram.

5.2.2 Thermodynamic Power Losses

The salient consequence of indicated power and brake power requiring measurements

at different points on the engine is that indicated power does not take into account

the myriad frictional and other thermodynamic losses that occur between the work-

ing fluid doing work on the piston, and that work being transformed into a torque

about the output shaft. Indicated power is a measurement of engine power before the

thermodynamic losses in whatever mechanisms (pistons and seals, linkage rods and

pivots, etc.) existing between the engine cylinders and the output shaft of the engine

have taken effect. Hence, brake power equals indicated power minus all thermody-

namic losses from relevant engine components that stand between the output shaft

and the cylinders in the powertrain.1 Hardly a surprise, then, that the measured

1As a natural extension, rear wheel power, a useful measurement for motorcycles or rear-wheel-
drive cars, equals indicated power minus losses due to engine components, minus losses due to final
drive components (such as a driveshaft, differential, or chain) existing between the output shaft of
the engine and the rear wheel itself.



5.2. Analysis 79

power output was so much less than the theoretically predicted power output across

all trials. The Senft model wasn’t accounting for frictional and other thermodynamic

losses that inevitably accompany a real engine.

The thermodynamic losses that the model does not consider can further explain

the earlier conundrum of the measured power curves having distinct maxima despite

the model predicting a steady, linear increase in power with RPM. Notable among

these losses are those that arise from heat transfer from the gas to the engine body,

from working fluid leakage around seals, and from aerodynamic friction, or viscous

fluid, losses [10, 25]. The losses from heat transfer are exacerbated by the fact that the

engine body, typically made from iron, steel, or aluminum, is thermally conductive

and hence readily absorbs heat. These thermal losses are more consequential for a

study of maximum engine efficiency, but they nevertheless influenced this study as

they effectively made TH lower, and TC higher, than the measured. Recall that TH

and TC reflect working fluid temperatures, but were recorded by measuring the surface

temperature of the engine at the hot and cold ends respectively. Assuming ideal heat

transfer, these engine temperatures should be the same as the gas temperatures, but

the real effects of thermal losses preclude such a convenient equivalence. Hence, the

values for TH and TC input into the Senft model indicated temperatures that were

higher or lower, respectively, than those the working fluid actually reached. Engine

speed likely has an effect on the magnitude of these thermal losses for with increased

engine speed comes a decrease in the amount of time available for heat transfer.

Somewhat ironically, the losses due to air leakage stem from an effort to keep

another thermodynamic loss, friction, to a minimum. Instead of o-rings or the tight

metal ring seals like those on the pistons of internal combustion engines, the seals

between the power piston and its cylinder, and between the displacer piston rod

and the bushing at the end of the cylinder, consist solely of oil films occupying the

minute clearance gap (on the order of 0.001 inch thick) between the components.

While certainly low-friction, this type of seal is (consequently) not the most airtight,

permitting leakage of the working fluid leading to engine pressures that are lower than

theoretically expected. Such leakage is visible if the power piston is manually inserted

into its cylinder: the pressure that builds in the engine space as the piston is pushed

in dissipates after a few seconds if the piston is held in. In addition to mucking with

engine pressures, working fluid leaking into and out of the engine through these seals

produces a heat pumping effect that can, like the thermal losses discussed above,

make TH lower than measured [26].

The viscous fluid losses, or flow losses, are the final major form of thermodynamic
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loss not accounted for by the Senft model. These losses originate mostly from the

working fluid needing to flow through the narrow annular gap between the displacer

and the inner cylinder wall with each pass of the piston, as well as from the fluid being

forced back and forth between the thin chamber connecting the displacer and power

cylinders (see Fig. 2.2). Since the working fluid, though a gas, is nevertheless viscous,

forcing it through these tight gaps and passages with each engine cycle requires energy

that ends up being taken from the engine. As one can imagine, flow losses are highly

dependent on engine speed for as ω increases, the frequency with which the working

fluid must move back and forth through the annular gap and the connecting chamber

increases [25]. Since energy is expended in forcing the working fluid through these

tight gaps, as engine speed increases the rate of expending energy increases, and hence

the power absorbed also increases.

Due to the velocity-dependent nature of flow losses, it is likely that beyond a

certain RPM, the power losses incurred may overwhelm what would otherwise be an

increasing power output resulting from increasing engine speed ω following Eq. (2.3).

This statement is deliberately weak since even attempting to describe the effects of

dynamic losses such as leakages and flow losses on power output requires third-order

numerical modeling techniques beyond the scope of this thesis [25]. Even friction, a

more familiar impediment to mathematical descriptions of real systems, is generally

difficult to accurately represent in models. Indeed, perhaps due to the scarcity of

experimental data on the subject of friction losses in Stirling engines, there exists no

equation in the literature correlating frictional forces and power losses [26]. However,

friction tends to be dependent on the surface area of the body in question, so for a

small engine such as the one used here, one that necessarily has a large piston-to-

cylinder contact patch relative to the small internal volume, the power loss effects of

friction can be substantial, even exceeding 20% of the engines indicated power [26].

5.3 Conclusions

We have established that the Schmidt model presented here is fundamentally incom-

patible with the Prony brake method of power measurement as the former assumes

a completely different measurement point than the latter method entails. But how

can we tell whether or not the measurements made with the Prony brake are reason-

able? Could it not be the case that output power did in fact increase steadily with

RPM, as the model predicts, but errors in the experimental design and execution of

the same skewed the results into the clearly non-linear plots of Figs. 5.1–5.2, and
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Figs. 5.6–5.6? Unlikely for a number of reasons. Firstly, the plots from the 14 trial

runs all agree in that they exhibit a trend of an increasing, peaking, then decreasing

power output as RPMs increase.2 With torque curves as smoothly trending as they

are [with the possible exceptions of plot (c) in Fig. 5.1, and plots (a) and (b) in Fig.

5.2], it is difficult to make the argument that the experimental design and methods

were ineffective to the point where the results acquired would indicate a relationship

between output power and engine speed so contrary to reality. Based on the clear

and certainly repeated trends visible in the plots, the data obtained seems sufficiently

self-consistent to warrant not being discounted due to its disagreement with the the-

oretical model presented. Indeed, results from studies performed by Karabulut et. al.

in [27] and Senft in [2] on the torque and power characteristics of the Stirling engine

agree with those presented here in that they, too, show peaking power curves that

fall off with increasing RPM, and torque curves that fall similarly. It is worth noting

that Karabulut et. al. also used a Prony brake type dynamometer in their tests.

Apart from being supported in the literature, the trend of decreasing torque,

responsible for decreasing power, makes intuitive sense as well. It seems reasonable

to argue that torque would be highest at lower engine speeds, for at such speeds the

working fluid is allowed more time to heat up and expand (or cool and compress)

during the power (compression) stroke, yielding increased force on the piston and

connecting rod during the stroke, and hence more torque on the crankshaft. This

explanation isn’t quite adequate, however, for the measurements made by Karabulut

et. al. indicate peaking torque curves, just like the power curves [27]. The data

presented here does not display peaking torque curves, likely because it became very

difficult to take consistent measurements of engine torque at speeds much lower than

250 RPM. Improving the experimental design by modifying the Prony brake and scale

system could solve this measurement problem. The scale could be replaced with a

strain gauge for more precise, and digitally recordable, force measurements, and and

the brake clamp made electronically controllable so that brake force could be applied

in the smallest, most controllable increments. Furthermore, the clamp area could

be shrunk so that a given turn of the brake adjustment screw would yield a smaller

increase in brake force, thereby increasing brake sensitivity even at low RPMs.

Self-consistency and agreement with the literature, except in certain aspects of the

torque curves, lends validity to the measured data, and the fact that brake power and

2The possible exception to this trend is plot (a) in Fig. 5.5. While the data doesn’t show with
absolute certainty a point of maximum power (though it suggests one, at around 325 RPM), it does,
like the other trials, conclucively indicate a decreasing power output with increasing RPM.
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indicated power are by definition different quantities means that the disagreement

between measurements and theory is insufficient to discount the model as fundamen-

tally flawed. By taking both the model and the experimental data as at least viable,

then, and ignoring the formidable difference in magnitude between the brake and

indicated power across all RPMs, we may draw some conclusions from the data as

to the accuracy of the model. We are only equipped to make observations of broad

trends, but this is sufficient for elucidating how well the model can describe the rela-

tionships between output power and swept volume ratio, and between output power

and phase angle. This is different from evaluating the extent to which the model can

accurately predict the magnitude of the power output for a given RPM, which we

understand from the previous section to be an incorrect standard of judgement.

As for the relationship between phase angle α and power, the model predicts that,

for a given engine speed, if the temperature ratio τ is kept constant but α is allowed

to vary, output power will increase until α ≈ 92◦, at which point power will decrease

with any subsequent increase in α. With the exception of the trial shown in plot

(c) of Fig. 5.5, a similar trend is observed experimentally, with brake power at 500

RPM (arbitrarily decided) increasing from α = 45◦ to α ≈ 100◦, then falling off

with increasing α. Fig. 5.9 plots output power against phase angle α (in radians)

according to the model and to the measured data. Despite the difference in scale

between the two curves, a similar relationship between α and output power is clearly

evident. If time had permitted, more trial runs for each phase angle setting would

have been performed to better confirm or deny the existence of this trend. As it

stands, however, it appears as though the model predicts a relationship between α

and brake power that is in fact visible experimentally.

The validity of the model in predicting the relationship between κ and power

output, however, is more questionable. The model predicts that, for a given RPM,

engine brake power will increase with increasing κ, all else being equal, but this is

not at all what happens in practice. This incongruity is readily visible in Fig. 5.10,

which plots both indicated power and measured brake power against κ. Though

eight different swept volume ratios were tested, only the data from five different

trials could be used in making this plot. The reason for this pertains to how κ is

adjusted, as well as what variables in the model, Eq. (2.12), need to be kept constant.

The swept volume ratio is adjustable by changing the strokes of the power and/or

displacer pistons, but with reference to Table 2.1, we can see that the dead volume

ratio χ is also indirectly dependent on the displacer piston stroke by virtue of being

directly dependent on the swept volume of the displacer piston. Hence, any change
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Figure 5.9: A plot of the relationship between phase angle α and output power at
500 RPM according to the Senft model (orange curve) and to experimental data
(red curve). The model predicts an increasing power output as α increases to ≈
90◦, and a decreasing power output as α increases further. A very similar trend is
visible in the experimental data, indicating that the model does in fact predict the
relationship between α and power output despite it being unable to accurately predict
the magnitude of the output power.
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in κ requiring a change in displacer piston stroke also results in a change in χ. To

determine the relationship between just κ and power, we must, however, keep the

variables α, τ , and χ all constant across trials. Of the eight swept volume ratio

trials, five of them used the same displacer stroke setting, with κ set by the power

piston stroke alone. Though the displacer piston stroke was kept constant during

these remaining three trials, it was kept at a different value than the other five, and

hence the data from all eight trials could not be plotted together. Since three data

points, one each from the three remaining trials, hardly constitutes enough data for

a plot (though, admittedly, five points isn’t much better), these trials were ignored

in this section of the analysis.

While the model predicts increasing power with increasing κ, Fig. 5.10 shows

that the real engine did not behave in the same way. Instead, power output was

observed to increase with κ until reaching a peak at κ ≈ 0.8, at which point power

would decrease with any subsequent increase in κ. Plots presented in [2] and [10]

show a similar trend, with brake power increasing, peaking, then decreasing with

increasing κ. A likely reason for this disagreement between measured data and the

model’s predictions is that an increase in κ mandates an increase in power piston

stroke since the need to keep χ constant precludes adjusting the displacer piston

stroke to manipulate κ. The larger the value of κ, then, the larger the power piston

stroke necessarily, and the faster the piston must move back and forth in its cylinder

for a given engine speed ω. This results from the fact that for each engine cycle at a

given engine speed, the piston must traverse a greater linear distance with a longer

stroke than with a shorter one. Velocity-dependent flow losses, therefore, become

more significant at higher κ, perhaps, at least in part, accounting for the decrease in

brake power with κ increasing past its power maximizing value.

Also an affect of larger κ and correspondingly longer power piston strokes is that

more of the piston is pulled from its cylinder per cycle at the top of its stroke. The

more the piston is drawn from its cylinder, the more the working fluid has a chance

to escape through imperfect oil seals (because less of the seal is present), thereby

reducing engine pressures and perhaps causing a heat pumping effect as well. Both of

these consequences of long power piston strokes could explain the peaking brake power

curve when a steadily increasing curve is theoretically expected. With longer strokes

also comes increased side-loading on the piston because of the extreme angles (with

respect to the horizontal) achieved by the connecting rod in the course of a cycle.

These extreme angles mean that more of the forces acting between the piston and its

connecting rod are directed perpendicularly to the piston’s velocity vector. Increased
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Figure 5.10: A plot of the relationship between swept volume ratio κ and output
power at 500 RPM according to the Senft model (orange curve) and to experimental
data (red curve). The model predicts an increasing power output as κ increases, but
a very different trend is visible in the experimental data, indicating that the model
does not in fact accurately predict the relationship between κ and power output.
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side-loading kinks the piston in its cylinder, decreasing the general effectiveness of

the oil-film lubricant (by displacing it), thus increasing friction between the piston

and its cylinder. Increased side-loading would also serve to progressively chip away at

output power with increasing κ. As the consequences of a long power piston stroke—

increased piston velocity yielding increased flow losses, decreased effectiveness of oil

seals, increased opportunity for heat pumping, increased side-loading—all fall under

the umbrella of thermodynamic losses that the model, by definition and by design,

cannot account for, the model’s disagreement with measurements in the case of the

relationship between power and κ is not sufficient to discount the model as inherently

flawed.

To compile the conclusions from this section and the previous subsection into a

more succinct statement, it appears, from comparison to measured data, that the

Schmidt model, presented by Senft in [2], is generally a poor fit for real engines.

Since it yields indicated power for a set of engine variables whereas the measurement

technique employed yields brake power, the measured data cannot be expected to

agree with the model, and vice-versa. That said, the model did seem capable of

predicting very broad, qualitative trends at least at low engine speeds. All the plots

in Figs. 5.1-5.8 exhibit increasing brake power with increasing RPM up to a power

maximizing RPM. The increase in power up to that RPM is mirrored in all cases

by the theoretical predictions. The model also successfully predicted the relationship

between output power and phase angle α with RPM set to 500. (It would be an

interesting extension to explore the model’s ability to predict the relationship between

power and phase angle α at higher, or lower, RPMs as well.) The model was also

successful in predicting increasing power output with increasing swept volume ratio

κ, but could not account for the observed decrease in brake power accompanying an

increase in κ beyond its power maximizing value. Overall, though, and especially

considering the marked difference between indicated power and brake power, the

Schmidt model performed reasonably well, and could at least certainly prove useful

in designing new Stirling engines.
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Figure A.1: This string of code, continued from the previous page, takes as its inputs
the numbers of the flywheel mounting holes used (n1 and n2), the phase angle α, the
temperatures Tlow = TC and Thot = TH as well as the ambient room temperature Tamb,
the engine speed in revolutions per minute, and the desired output of the program,
either the power generated or cyclic work performed. These inputs are sufficient
for determining κ, τ , and χ, which, with the addition of α and ω, are sufficient
for calculating Wcyc and power following the Senft model. This code was used to
generate plots of theoretical power output versus engine speed to compare with plots
of measured output power versus engine speed.
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Figure A.2: Here we find the code used to produce the torque and power curves
presented in Chapter 5. The program DataSlayer takes as inputs a list of data of the
form (RPMs, mass), the raw data from a trial run, and a value labeled as “offset.”
The purpose of this latter value is to scale the mass readings down (or up) if the scale
couldn’t be properly zeroed after positioning of the Prony brake before commencing
the trial. Getting the scale to tare effectively was difficult; the offset variable solves
this problem. The code assumes that g = 9.81 m s−2, and uses a lever arm R of 0.102
m.
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